L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 − 1.5i)3-s + (−1.5 − 2.59i)4-s + 1.73i·6-s + (6.06 − 3.5i)7-s + 7i·8-s + (−1.5 + 2.59i)9-s + (5.5 + 9.52i)11-s + (−2.59 + 4.5i)12-s + 6.92·13-s − 7·14-s + (−2.5 + 4.33i)16-s + (12.1 + 21i)17-s + (2.59 − 1.5i)18-s + (3 + 1.73i)19-s + ⋯ |
L(s) = 1 | + (−0.433 − 0.250i)2-s + (−0.288 − 0.5i)3-s + (−0.375 − 0.649i)4-s + 0.288i·6-s + (0.866 − 0.5i)7-s + 0.875i·8-s + (−0.166 + 0.288i)9-s + (0.5 + 0.866i)11-s + (−0.216 + 0.375i)12-s + 0.532·13-s − 0.5·14-s + (−0.156 + 0.270i)16-s + (0.713 + 1.23i)17-s + (0.144 − 0.0833i)18-s + (0.157 + 0.0911i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.830 + 0.556i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.830 + 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.295019184\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295019184\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 + 1.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-6.06 + 3.5i)T \) |
good | 2 | \( 1 + (0.866 + 0.5i)T + (2 + 3.46i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 6.92T + 169T^{2} \) |
| 17 | \( 1 + (-12.1 - 21i)T + (-144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-3 - 1.73i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-24.2 - 14i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 25T + 841T^{2} \) |
| 31 | \( 1 + (28.5 - 16.4i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-50.2 - 29i)T + (684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 3.46iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 26iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-38.1 + 66i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (26.8 - 15.5i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-7.5 + 4.33i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-12 - 6.92i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (45.0 - 26i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 64T + 5.04e3T^{2} \) |
| 73 | \( 1 + (3.46 + 6i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-8.5 + 14.7i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 53.6T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-69 - 39.8i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + 91.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66503145146611608335478983259, −9.762018392291203785829019718573, −8.822041825759851598073770750540, −7.939944296488089614495143001092, −7.04552313116727225625616397176, −5.85675285997115856241118510316, −5.02131484312083713119126845977, −3.87216670849160274618762712321, −1.84188929529795569182209528238, −1.10923256880395524757159773713,
0.820610770197438125353071286406, 2.93057573770476948011170468968, 4.03484267833134658658519415338, 5.08184219194801493198382769646, 6.06969052970076592156088463462, 7.35131458548544408189977750382, 8.125317032918107460664325672595, 9.143094299253493697634489122135, 9.392576777121354877380601098257, 10.93868356030360667189605906237