Properties

Label 2-525-35.19-c2-0-16
Degree 22
Conductor 525525
Sign 0.830+0.556i0.830 + 0.556i
Analytic cond. 14.305214.3052
Root an. cond. 3.782223.78222
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.866 − 1.5i)3-s + (−1.5 − 2.59i)4-s + 1.73i·6-s + (6.06 − 3.5i)7-s + 7i·8-s + (−1.5 + 2.59i)9-s + (5.5 + 9.52i)11-s + (−2.59 + 4.5i)12-s + 6.92·13-s − 7·14-s + (−2.5 + 4.33i)16-s + (12.1 + 21i)17-s + (2.59 − 1.5i)18-s + (3 + 1.73i)19-s + ⋯
L(s)  = 1  + (−0.433 − 0.250i)2-s + (−0.288 − 0.5i)3-s + (−0.375 − 0.649i)4-s + 0.288i·6-s + (0.866 − 0.5i)7-s + 0.875i·8-s + (−0.166 + 0.288i)9-s + (0.5 + 0.866i)11-s + (−0.216 + 0.375i)12-s + 0.532·13-s − 0.5·14-s + (−0.156 + 0.270i)16-s + (0.713 + 1.23i)17-s + (0.144 − 0.0833i)18-s + (0.157 + 0.0911i)19-s + ⋯

Functional equation

Λ(s)=(525s/2ΓC(s)L(s)=((0.830+0.556i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.830 + 0.556i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(525s/2ΓC(s+1)L(s)=((0.830+0.556i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.830 + 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 525525    =    35273 \cdot 5^{2} \cdot 7
Sign: 0.830+0.556i0.830 + 0.556i
Analytic conductor: 14.305214.3052
Root analytic conductor: 3.782223.78222
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ525(124,)\chi_{525} (124, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 525, ( :1), 0.830+0.556i)(2,\ 525,\ (\ :1),\ 0.830 + 0.556i)

Particular Values

L(32)L(\frac{3}{2}) \approx 1.2950191841.295019184
L(12)L(\frac12) \approx 1.2950191841.295019184
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.866+1.5i)T 1 + (0.866 + 1.5i)T
5 1 1
7 1+(6.06+3.5i)T 1 + (-6.06 + 3.5i)T
good2 1+(0.866+0.5i)T+(2+3.46i)T2 1 + (0.866 + 0.5i)T + (2 + 3.46i)T^{2}
11 1+(5.59.52i)T+(60.5+104.i)T2 1 + (-5.5 - 9.52i)T + (-60.5 + 104. i)T^{2}
13 16.92T+169T2 1 - 6.92T + 169T^{2}
17 1+(12.121i)T+(144.5+250.i)T2 1 + (-12.1 - 21i)T + (-144.5 + 250. i)T^{2}
19 1+(31.73i)T+(180.5+312.i)T2 1 + (-3 - 1.73i)T + (180.5 + 312. i)T^{2}
23 1+(24.214i)T+(264.5+458.i)T2 1 + (-24.2 - 14i)T + (264.5 + 458. i)T^{2}
29 1+25T+841T2 1 + 25T + 841T^{2}
31 1+(28.516.4i)T+(480.5832.i)T2 1 + (28.5 - 16.4i)T + (480.5 - 832. i)T^{2}
37 1+(50.229i)T+(684.5+1.18e3i)T2 1 + (-50.2 - 29i)T + (684.5 + 1.18e3i)T^{2}
41 13.46iT1.68e3T2 1 - 3.46iT - 1.68e3T^{2}
43 1+26iT1.84e3T2 1 + 26iT - 1.84e3T^{2}
47 1+(38.1+66i)T+(1.10e31.91e3i)T2 1 + (-38.1 + 66i)T + (-1.10e3 - 1.91e3i)T^{2}
53 1+(26.815.5i)T+(1.40e32.43e3i)T2 1 + (26.8 - 15.5i)T + (1.40e3 - 2.43e3i)T^{2}
59 1+(7.5+4.33i)T+(1.74e33.01e3i)T2 1 + (-7.5 + 4.33i)T + (1.74e3 - 3.01e3i)T^{2}
61 1+(126.92i)T+(1.86e3+3.22e3i)T2 1 + (-12 - 6.92i)T + (1.86e3 + 3.22e3i)T^{2}
67 1+(45.026i)T+(2.24e33.88e3i)T2 1 + (45.0 - 26i)T + (2.24e3 - 3.88e3i)T^{2}
71 164T+5.04e3T2 1 - 64T + 5.04e3T^{2}
73 1+(3.46+6i)T+(2.66e3+4.61e3i)T2 1 + (3.46 + 6i)T + (-2.66e3 + 4.61e3i)T^{2}
79 1+(8.5+14.7i)T+(3.12e35.40e3i)T2 1 + (-8.5 + 14.7i)T + (-3.12e3 - 5.40e3i)T^{2}
83 153.6T+6.88e3T2 1 - 53.6T + 6.88e3T^{2}
89 1+(6939.8i)T+(3.96e3+6.85e3i)T2 1 + (-69 - 39.8i)T + (3.96e3 + 6.85e3i)T^{2}
97 1+91.7T+9.40e3T2 1 + 91.7T + 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.66503145146611608335478983259, −9.762018392291203785829019718573, −8.822041825759851598073770750540, −7.939944296488089614495143001092, −7.04552313116727225625616397176, −5.85675285997115856241118510316, −5.02131484312083713119126845977, −3.87216670849160274618762712321, −1.84188929529795569182209528238, −1.10923256880395524757159773713, 0.820610770197438125353071286406, 2.93057573770476948011170468968, 4.03484267833134658658519415338, 5.08184219194801493198382769646, 6.06969052970076592156088463462, 7.35131458548544408189977750382, 8.125317032918107460664325672595, 9.143094299253493697634489122135, 9.392576777121354877380601098257, 10.93868356030360667189605906237

Graph of the ZZ-function along the critical line