L(s) = 1 | − 1.52·2-s + 3·3-s − 5.66·4-s − 4.58·6-s + 7·7-s + 20.8·8-s + 9·9-s + 51.3·11-s − 16.9·12-s − 87.2·13-s − 10.6·14-s + 13.4·16-s + 80.6·17-s − 13.7·18-s − 29.8·19-s + 21·21-s − 78.4·22-s + 1.71·23-s + 62.6·24-s + 133.·26-s + 27·27-s − 39.6·28-s − 204.·29-s − 150.·31-s − 187.·32-s + 154.·33-s − 123.·34-s + ⋯ |
L(s) = 1 | − 0.540·2-s + 0.577·3-s − 0.708·4-s − 0.311·6-s + 0.377·7-s + 0.922·8-s + 0.333·9-s + 1.40·11-s − 0.408·12-s − 1.86·13-s − 0.204·14-s + 0.209·16-s + 1.15·17-s − 0.180·18-s − 0.360·19-s + 0.218·21-s − 0.760·22-s + 0.0155·23-s + 0.532·24-s + 1.00·26-s + 0.192·27-s − 0.267·28-s − 1.31·29-s − 0.870·31-s − 1.03·32-s + 0.812·33-s − 0.621·34-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.592894878 |
L(21) |
≈ |
1.592894878 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1 |
| 7 | 1−7T |
good | 2 | 1+1.52T+8T2 |
| 11 | 1−51.3T+1.33e3T2 |
| 13 | 1+87.2T+2.19e3T2 |
| 17 | 1−80.6T+4.91e3T2 |
| 19 | 1+29.8T+6.85e3T2 |
| 23 | 1−1.71T+1.21e4T2 |
| 29 | 1+204.T+2.43e4T2 |
| 31 | 1+150.T+2.97e4T2 |
| 37 | 1−366.T+5.06e4T2 |
| 41 | 1−176.T+6.89e4T2 |
| 43 | 1−394.T+7.95e4T2 |
| 47 | 1−507.T+1.03e5T2 |
| 53 | 1+149.T+1.48e5T2 |
| 59 | 1−463.T+2.05e5T2 |
| 61 | 1−380.T+2.26e5T2 |
| 67 | 1+797.T+3.00e5T2 |
| 71 | 1+220.T+3.57e5T2 |
| 73 | 1−1.01e3T+3.89e5T2 |
| 79 | 1+111.T+4.93e5T2 |
| 83 | 1−853.T+5.71e5T2 |
| 89 | 1+935.T+7.04e5T2 |
| 97 | 1−783.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07034735379694470920804502425, −9.423837180087403023764266390915, −8.921447812706114594747116051176, −7.68262627349362274219596616691, −7.35095989976259354814582132288, −5.73390103094970890650081308637, −4.58354015178327411564346441714, −3.76438616926355740433122976364, −2.17938860412614093740260228562, −0.851715233936014343985784508710,
0.851715233936014343985784508710, 2.17938860412614093740260228562, 3.76438616926355740433122976364, 4.58354015178327411564346441714, 5.73390103094970890650081308637, 7.35095989976259354814582132288, 7.68262627349362274219596616691, 8.921447812706114594747116051176, 9.423837180087403023764266390915, 10.07034735379694470920804502425