L(s) = 1 | − 1.52·2-s + 3·3-s − 5.66·4-s − 4.58·6-s + 7·7-s + 20.8·8-s + 9·9-s + 51.3·11-s − 16.9·12-s − 87.2·13-s − 10.6·14-s + 13.4·16-s + 80.6·17-s − 13.7·18-s − 29.8·19-s + 21·21-s − 78.4·22-s + 1.71·23-s + 62.6·24-s + 133.·26-s + 27·27-s − 39.6·28-s − 204.·29-s − 150.·31-s − 187.·32-s + 154.·33-s − 123.·34-s + ⋯ |
L(s) = 1 | − 0.540·2-s + 0.577·3-s − 0.708·4-s − 0.311·6-s + 0.377·7-s + 0.922·8-s + 0.333·9-s + 1.40·11-s − 0.408·12-s − 1.86·13-s − 0.204·14-s + 0.209·16-s + 1.15·17-s − 0.180·18-s − 0.360·19-s + 0.218·21-s − 0.760·22-s + 0.0155·23-s + 0.532·24-s + 1.00·26-s + 0.192·27-s − 0.267·28-s − 1.31·29-s − 0.870·31-s − 1.03·32-s + 0.812·33-s − 0.621·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.592894878\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.592894878\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3T \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 + 1.52T + 8T^{2} \) |
| 11 | \( 1 - 51.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 87.2T + 2.19e3T^{2} \) |
| 17 | \( 1 - 80.6T + 4.91e3T^{2} \) |
| 19 | \( 1 + 29.8T + 6.85e3T^{2} \) |
| 23 | \( 1 - 1.71T + 1.21e4T^{2} \) |
| 29 | \( 1 + 204.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 150.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 366.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 176.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 394.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 507.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 149.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 463.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 380.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 797.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 220.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.01e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 111.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 853.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 935.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 783.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07034735379694470920804502425, −9.423837180087403023764266390915, −8.921447812706114594747116051176, −7.68262627349362274219596616691, −7.35095989976259354814582132288, −5.73390103094970890650081308637, −4.58354015178327411564346441714, −3.76438616926355740433122976364, −2.17938860412614093740260228562, −0.851715233936014343985784508710,
0.851715233936014343985784508710, 2.17938860412614093740260228562, 3.76438616926355740433122976364, 4.58354015178327411564346441714, 5.73390103094970890650081308637, 7.35095989976259354814582132288, 7.68262627349362274219596616691, 8.921447812706114594747116051176, 9.423837180087403023764266390915, 10.07034735379694470920804502425