L(s) = 1 | − 2i·2-s − 3i·3-s + 4·4-s − 6·6-s − 7i·7-s − 24i·8-s − 9·9-s − 21·11-s − 12i·12-s − 24i·13-s − 14·14-s − 16·16-s − 22i·17-s + 18i·18-s − 16·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s + 0.5·4-s − 0.408·6-s − 0.377i·7-s − 1.06i·8-s − 0.333·9-s − 0.575·11-s − 0.288i·12-s − 0.512i·13-s − 0.267·14-s − 0.250·16-s − 0.313i·17-s + 0.235i·18-s − 0.193·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.382361315 |
L(21) |
≈ |
1.382361315 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 2 | 1+2iT−8T2 |
| 11 | 1+21T+1.33e3T2 |
| 13 | 1+24iT−2.19e3T2 |
| 17 | 1+22iT−4.91e3T2 |
| 19 | 1+16T+6.85e3T2 |
| 23 | 1−25iT−1.21e4T2 |
| 29 | 1+167T+2.43e4T2 |
| 31 | 1−10T+2.97e4T2 |
| 37 | 1+133iT−5.06e4T2 |
| 41 | 1+168T+6.89e4T2 |
| 43 | 1−97iT−7.95e4T2 |
| 47 | 1+400iT−1.03e5T2 |
| 53 | 1−182iT−1.48e5T2 |
| 59 | 1+488T+2.05e5T2 |
| 61 | 1−28T+2.26e5T2 |
| 67 | 1+967iT−3.00e5T2 |
| 71 | 1+285T+3.57e5T2 |
| 73 | 1−838iT−3.89e5T2 |
| 79 | 1−469T+4.93e5T2 |
| 83 | 1−406iT−5.71e5T2 |
| 89 | 1+324T+7.04e5T2 |
| 97 | 1+114iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21420790210294167924953949616, −9.223980873564047010625797149322, −7.948282652397653849486575767798, −7.28808761962150163831461415376, −6.35826795053767554196357805109, −5.26994691689554823239706844716, −3.77574623727867459499807250738, −2.75288179062054437215414622114, −1.68071640212912531972121827183, −0.38142142708802669271933037256,
1.94354790731588735069840882354, 3.11999090111784363946957797728, 4.54174436188252590321305161765, 5.53096164188063286123335215275, 6.30861724904856560383403885985, 7.33274278909123766119537041455, 8.228796414578987652865381425721, 9.034035468909475440393734547129, 10.09822296234234106787534183967, 10.95434016999755428996981208780