L(s) = 1 | + (0.309 + 1.70i)3-s + (0.442 + 0.609i)5-s + (0.442 − 0.143i)7-s + (−2.80 + 1.05i)9-s + (2.46 + 2.21i)11-s + (−3.12 + 4.29i)13-s + (−0.901 + 0.942i)15-s + (2.99 − 2.17i)17-s + (−2.02 − 0.659i)19-s + (0.381 + 0.710i)21-s + 6.24i·23-s + (1.36 − 4.21i)25-s + (−2.66 − 4.46i)27-s + (3.09 + 9.53i)29-s + (−2.96 − 2.15i)31-s + ⋯ |
L(s) = 1 | + (0.178 + 0.983i)3-s + (0.197 + 0.272i)5-s + (0.167 − 0.0543i)7-s + (−0.936 + 0.351i)9-s + (0.744 + 0.668i)11-s + (−0.865 + 1.19i)13-s + (−0.232 + 0.243i)15-s + (0.726 − 0.527i)17-s + (−0.465 − 0.151i)19-s + (0.0833 + 0.154i)21-s + 1.30i·23-s + (0.273 − 0.843i)25-s + (−0.512 − 0.858i)27-s + (0.575 + 1.77i)29-s + (−0.532 − 0.386i)31-s + ⋯ |
Λ(s)=(=(528s/2ΓC(s)L(s)(−0.315−0.948i)Λ(2−s)
Λ(s)=(=(528s/2ΓC(s+1/2)L(s)(−0.315−0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
528
= 24⋅3⋅11
|
Sign: |
−0.315−0.948i
|
Analytic conductor: |
4.21610 |
Root analytic conductor: |
2.05331 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ528(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 528, ( :1/2), −0.315−0.948i)
|
Particular Values
L(1) |
≈ |
0.850430+1.17871i |
L(21) |
≈ |
0.850430+1.17871i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.309−1.70i)T |
| 11 | 1+(−2.46−2.21i)T |
good | 5 | 1+(−0.442−0.609i)T+(−1.54+4.75i)T2 |
| 7 | 1+(−0.442+0.143i)T+(5.66−4.11i)T2 |
| 13 | 1+(3.12−4.29i)T+(−4.01−12.3i)T2 |
| 17 | 1+(−2.99+2.17i)T+(5.25−16.1i)T2 |
| 19 | 1+(2.02+0.659i)T+(15.3+11.1i)T2 |
| 23 | 1−6.24iT−23T2 |
| 29 | 1+(−3.09−9.53i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.96+2.15i)T+(9.57+29.4i)T2 |
| 37 | 1+(2.16+6.66i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−0.0135+0.0416i)T+(−33.1−24.0i)T2 |
| 43 | 1−5.49iT−43T2 |
| 47 | 1+(3.03+0.987i)T+(38.0+27.6i)T2 |
| 53 | 1+(−3.00+4.13i)T+(−16.3−50.4i)T2 |
| 59 | 1+(−11.0+3.59i)T+(47.7−34.6i)T2 |
| 61 | 1+(−2.31−3.19i)T+(−18.8+58.0i)T2 |
| 67 | 1−6.70T+67T2 |
| 71 | 1+(0.527+0.726i)T+(−21.9+67.5i)T2 |
| 73 | 1+(−7.32+2.38i)T+(59.0−42.9i)T2 |
| 79 | 1+(−2.34+3.22i)T+(−24.4−75.1i)T2 |
| 83 | 1+(−8.76+6.36i)T+(25.6−78.9i)T2 |
| 89 | 1+6.48iT−89T2 |
| 97 | 1+(−2.13−1.55i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08925240566920150037804781634, −10.02394984443618977309228538086, −9.499431292760650386554435778928, −8.741246260639576540380398509646, −7.46527326057764489911837943268, −6.61178051614655248456378401230, −5.28194075190092345579561191308, −4.48161629826686457025522139752, −3.42228241832282648531488898417, −2.04738776923316972544956776289,
0.861118362337336697328408735705, 2.34288608605806259539238535444, 3.55668518736839375678354013918, 5.14052084540614745841713641452, 6.05221373707169542028935851208, 6.92136879230498974910031681701, 8.093374609698445159674943225240, 8.471208204089279386756001877136, 9.661094768923171562732979689192, 10.60720578796230748475271333942