L(s) = 1 | + (0.309 + 1.70i)3-s + (0.442 + 0.609i)5-s + (0.442 − 0.143i)7-s + (−2.80 + 1.05i)9-s + (2.46 + 2.21i)11-s + (−3.12 + 4.29i)13-s + (−0.901 + 0.942i)15-s + (2.99 − 2.17i)17-s + (−2.02 − 0.659i)19-s + (0.381 + 0.710i)21-s + 6.24i·23-s + (1.36 − 4.21i)25-s + (−2.66 − 4.46i)27-s + (3.09 + 9.53i)29-s + (−2.96 − 2.15i)31-s + ⋯ |
L(s) = 1 | + (0.178 + 0.983i)3-s + (0.197 + 0.272i)5-s + (0.167 − 0.0543i)7-s + (−0.936 + 0.351i)9-s + (0.744 + 0.668i)11-s + (−0.865 + 1.19i)13-s + (−0.232 + 0.243i)15-s + (0.726 − 0.527i)17-s + (−0.465 − 0.151i)19-s + (0.0833 + 0.154i)21-s + 1.30i·23-s + (0.273 − 0.843i)25-s + (−0.512 − 0.858i)27-s + (0.575 + 1.77i)29-s + (−0.532 − 0.386i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.315 - 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.315 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.850430 + 1.17871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.850430 + 1.17871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 - 1.70i)T \) |
| 11 | \( 1 + (-2.46 - 2.21i)T \) |
good | 5 | \( 1 + (-0.442 - 0.609i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.442 + 0.143i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.12 - 4.29i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.99 + 2.17i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (2.02 + 0.659i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6.24iT - 23T^{2} \) |
| 29 | \( 1 + (-3.09 - 9.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.96 + 2.15i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.16 + 6.66i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.0135 + 0.0416i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 5.49iT - 43T^{2} \) |
| 47 | \( 1 + (3.03 + 0.987i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.00 + 4.13i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-11.0 + 3.59i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.31 - 3.19i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 6.70T + 67T^{2} \) |
| 71 | \( 1 + (0.527 + 0.726i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-7.32 + 2.38i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.34 + 3.22i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.76 + 6.36i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6.48iT - 89T^{2} \) |
| 97 | \( 1 + (-2.13 - 1.55i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08925240566920150037804781634, −10.02394984443618977309228538086, −9.499431292760650386554435778928, −8.741246260639576540380398509646, −7.46527326057764489911837943268, −6.61178051614655248456378401230, −5.28194075190092345579561191308, −4.48161629826686457025522139752, −3.42228241832282648531488898417, −2.04738776923316972544956776289,
0.861118362337336697328408735705, 2.34288608605806259539238535444, 3.55668518736839375678354013918, 5.14052084540614745841713641452, 6.05221373707169542028935851208, 6.92136879230498974910031681701, 8.093374609698445159674943225240, 8.471208204089279386756001877136, 9.661094768923171562732979689192, 10.60720578796230748475271333942