L(s) = 1 | + (−0.809 − 1.53i)3-s + (−0.897 + 0.291i)5-s + (−0.897 + 1.23i)7-s + (−1.69 + 2.47i)9-s + (−0.151 + 3.31i)11-s + (4.03 + 1.30i)13-s + (1.17 + 1.13i)15-s + (−0.906 − 2.78i)17-s + (4.16 + 5.73i)19-s + (2.61 + 0.375i)21-s − 1.18i·23-s + (−3.32 + 2.41i)25-s + (5.16 + 0.584i)27-s + (5.17 + 3.75i)29-s + (2.68 − 8.27i)31-s + ⋯ |
L(s) = 1 | + (−0.467 − 0.884i)3-s + (−0.401 + 0.130i)5-s + (−0.339 + 0.466i)7-s + (−0.563 + 0.826i)9-s + (−0.0457 + 0.998i)11-s + (1.11 + 0.363i)13-s + (0.302 + 0.293i)15-s + (−0.219 − 0.676i)17-s + (0.956 + 1.31i)19-s + (0.571 + 0.0818i)21-s − 0.247i·23-s + (−0.664 + 0.483i)25-s + (0.993 + 0.112i)27-s + (0.960 + 0.697i)29-s + (0.482 − 1.48i)31-s + ⋯ |
Λ(s)=(=(528s/2ΓC(s)L(s)(0.743−0.668i)Λ(2−s)
Λ(s)=(=(528s/2ΓC(s+1/2)L(s)(0.743−0.668i)Λ(1−s)
Degree: |
2 |
Conductor: |
528
= 24⋅3⋅11
|
Sign: |
0.743−0.668i
|
Analytic conductor: |
4.21610 |
Root analytic conductor: |
2.05331 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ528(497,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 528, ( :1/2), 0.743−0.668i)
|
Particular Values
L(1) |
≈ |
0.902905+0.346245i |
L(21) |
≈ |
0.902905+0.346245i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.809+1.53i)T |
| 11 | 1+(0.151−3.31i)T |
good | 5 | 1+(0.897−0.291i)T+(4.04−2.93i)T2 |
| 7 | 1+(0.897−1.23i)T+(−2.16−6.65i)T2 |
| 13 | 1+(−4.03−1.30i)T+(10.5+7.64i)T2 |
| 17 | 1+(0.906+2.78i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−4.16−5.73i)T+(−5.87+18.0i)T2 |
| 23 | 1+1.18iT−23T2 |
| 29 | 1+(−5.17−3.75i)T+(8.96+27.5i)T2 |
| 31 | 1+(−2.68+8.27i)T+(−25.0−18.2i)T2 |
| 37 | 1+(2.28+1.66i)T+(11.4+35.1i)T2 |
| 41 | 1+(5.92−4.30i)T+(12.6−38.9i)T2 |
| 43 | 1−5.34iT−43T2 |
| 47 | 1+(−5.58−7.68i)T+(−14.5+44.6i)T2 |
| 53 | 1+(−4.62−1.50i)T+(42.8+31.1i)T2 |
| 59 | 1+(2.74−3.77i)T+(−18.2−56.1i)T2 |
| 61 | 1+(0.685−0.222i)T+(49.3−35.8i)T2 |
| 67 | 1+3.89T+67T2 |
| 71 | 1+(9.47−3.07i)T+(57.4−41.7i)T2 |
| 73 | 1+(−1.03+1.41i)T+(−22.5−69.4i)T2 |
| 79 | 1+(−1.56−0.508i)T+(63.9+46.4i)T2 |
| 83 | 1+(1.90+5.85i)T+(−67.1+48.7i)T2 |
| 89 | 1−17.3iT−89T2 |
| 97 | 1+(−3.54+10.8i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.19925146335010074443416222526, −10.12862636627393807342535832703, −9.149813418860122259142072563437, −8.047164046683119181993288893224, −7.35315563707262449283318018887, −6.38032785459541258910770861232, −5.60252802995582398500129309689, −4.31592464711625650931881090512, −2.87714364244171374790092873417, −1.45672439881641181230426113871,
0.65938177027641450999057555364, 3.19853305447220501358837363897, 3.90596460773039279353205444796, 5.08457779162059283325102500776, 6.03498971480284268892011209257, 6.94827943242707990444058812026, 8.403152525472750631106740881143, 8.855469022834922351116212144989, 10.15066948493059845081024955306, 10.63759488461104650097739637079