Properties

Label 2-23e2-1.1-c3-0-104
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.87·2-s − 3.41·3-s + 7.02·4-s + 12.7·5-s − 13.2·6-s − 1.75·7-s − 3.78·8-s − 15.3·9-s + 49.5·10-s − 50.7·11-s − 23.9·12-s + 17.6·13-s − 6.78·14-s − 43.6·15-s − 70.8·16-s + 12.5·17-s − 59.5·18-s − 153.·19-s + 89.8·20-s + 5.97·21-s − 196.·22-s + 12.9·24-s + 38.6·25-s + 68.5·26-s + 144.·27-s − 12.2·28-s + 181.·29-s + ⋯
L(s)  = 1  + 1.37·2-s − 0.656·3-s + 0.877·4-s + 1.14·5-s − 0.900·6-s − 0.0945·7-s − 0.167·8-s − 0.568·9-s + 1.56·10-s − 1.39·11-s − 0.576·12-s + 0.377·13-s − 0.129·14-s − 0.751·15-s − 1.10·16-s + 0.179·17-s − 0.779·18-s − 1.85·19-s + 1.00·20-s + 0.0620·21-s − 1.90·22-s + 0.110·24-s + 0.309·25-s + 0.517·26-s + 1.03·27-s − 0.0829·28-s + 1.16·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 3.87T + 8T^{2} \)
3 \( 1 + 3.41T + 27T^{2} \)
5 \( 1 - 12.7T + 125T^{2} \)
7 \( 1 + 1.75T + 343T^{2} \)
11 \( 1 + 50.7T + 1.33e3T^{2} \)
13 \( 1 - 17.6T + 2.19e3T^{2} \)
17 \( 1 - 12.5T + 4.91e3T^{2} \)
19 \( 1 + 153.T + 6.85e3T^{2} \)
29 \( 1 - 181.T + 2.43e4T^{2} \)
31 \( 1 + 87.9T + 2.97e4T^{2} \)
37 \( 1 + 301.T + 5.06e4T^{2} \)
41 \( 1 - 466.T + 6.89e4T^{2} \)
43 \( 1 + 50.0T + 7.95e4T^{2} \)
47 \( 1 + 189.T + 1.03e5T^{2} \)
53 \( 1 + 408.T + 1.48e5T^{2} \)
59 \( 1 - 73.0T + 2.05e5T^{2} \)
61 \( 1 + 189.T + 2.26e5T^{2} \)
67 \( 1 - 4.68T + 3.00e5T^{2} \)
71 \( 1 + 867.T + 3.57e5T^{2} \)
73 \( 1 - 553.T + 3.89e5T^{2} \)
79 \( 1 + 606.T + 4.93e5T^{2} \)
83 \( 1 - 823.T + 5.71e5T^{2} \)
89 \( 1 - 381.T + 7.04e5T^{2} \)
97 \( 1 - 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42851138550993977260967436858, −9.170618552655585061884246105920, −8.182288399362096347625307755180, −6.58318831841944626271156029336, −6.02153461492518425142811412210, −5.34101891475077198904699778706, −4.55444899911359151676715893871, −3.08241318782938946871161411230, −2.14330113912419483348279021267, 0, 2.14330113912419483348279021267, 3.08241318782938946871161411230, 4.55444899911359151676715893871, 5.34101891475077198904699778706, 6.02153461492518425142811412210, 6.58318831841944626271156029336, 8.182288399362096347625307755180, 9.170618552655585061884246105920, 10.42851138550993977260967436858

Graph of the $Z$-function along the critical line