Properties

Label 2-23e2-1.1-c3-0-86
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.80·2-s + 7.34·3-s + 6.51·4-s + 5.81·5-s − 27.9·6-s − 15.8·7-s + 5.67·8-s + 26.9·9-s − 22.1·10-s − 65.8·11-s + 47.8·12-s + 72.8·13-s + 60.2·14-s + 42.6·15-s − 73.6·16-s − 39.1·17-s − 102.·18-s + 39.3·19-s + 37.8·20-s − 116.·21-s + 250.·22-s + 41.6·24-s − 91.2·25-s − 277.·26-s − 0.602·27-s − 103.·28-s − 116.·29-s + ⋯
L(s)  = 1  − 1.34·2-s + 1.41·3-s + 0.813·4-s + 0.519·5-s − 1.90·6-s − 0.854·7-s + 0.250·8-s + 0.996·9-s − 0.699·10-s − 1.80·11-s + 1.15·12-s + 1.55·13-s + 1.15·14-s + 0.734·15-s − 1.15·16-s − 0.559·17-s − 1.34·18-s + 0.475·19-s + 0.422·20-s − 1.20·21-s + 2.42·22-s + 0.354·24-s − 0.729·25-s − 2.09·26-s − 0.00429·27-s − 0.695·28-s − 0.747·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 3.80T + 8T^{2} \)
3 \( 1 - 7.34T + 27T^{2} \)
5 \( 1 - 5.81T + 125T^{2} \)
7 \( 1 + 15.8T + 343T^{2} \)
11 \( 1 + 65.8T + 1.33e3T^{2} \)
13 \( 1 - 72.8T + 2.19e3T^{2} \)
17 \( 1 + 39.1T + 4.91e3T^{2} \)
19 \( 1 - 39.3T + 6.85e3T^{2} \)
29 \( 1 + 116.T + 2.43e4T^{2} \)
31 \( 1 - 46.1T + 2.97e4T^{2} \)
37 \( 1 + 276.T + 5.06e4T^{2} \)
41 \( 1 + 262.T + 6.89e4T^{2} \)
43 \( 1 + 165.T + 7.95e4T^{2} \)
47 \( 1 - 168.T + 1.03e5T^{2} \)
53 \( 1 - 36.3T + 1.48e5T^{2} \)
59 \( 1 - 526.T + 2.05e5T^{2} \)
61 \( 1 - 185.T + 2.26e5T^{2} \)
67 \( 1 - 13.1T + 3.00e5T^{2} \)
71 \( 1 + 97.5T + 3.57e5T^{2} \)
73 \( 1 + 432.T + 3.89e5T^{2} \)
79 \( 1 - 1.04e3T + 4.93e5T^{2} \)
83 \( 1 + 1.02e3T + 5.71e5T^{2} \)
89 \( 1 + 933.T + 7.04e5T^{2} \)
97 \( 1 + 521.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.859035119746643987545020141785, −8.989307242633337018414262018288, −8.419057397815698777812218068123, −7.74633060208651241329856710625, −6.75361999405841634150303298053, −5.45930288981228484619189761382, −3.74430472528369433168598958552, −2.69627495188829713304915644031, −1.69831520471135075823809365969, 0, 1.69831520471135075823809365969, 2.69627495188829713304915644031, 3.74430472528369433168598958552, 5.45930288981228484619189761382, 6.75361999405841634150303298053, 7.74633060208651241329856710625, 8.419057397815698777812218068123, 8.989307242633337018414262018288, 9.859035119746643987545020141785

Graph of the $Z$-function along the critical line