L(s) = 1 | + 0.0764·5-s + 5.38i·11-s + (4.60 + 2.65i)13-s + (−1.89 + 3.27i)17-s + (4.33 − 2.50i)19-s + 2.33i·23-s − 4.99·25-s + (−8.84 + 5.10i)29-s + (−4.97 + 2.87i)31-s + (0.354 + 0.613i)37-s + (3.29 − 5.71i)41-s + (0.716 + 1.24i)43-s + (−1.46 + 2.53i)47-s + (−10.4 − 6.05i)53-s + 0.411i·55-s + ⋯ |
L(s) = 1 | + 0.0341·5-s + 1.62i·11-s + (1.27 + 0.737i)13-s + (−0.458 + 0.794i)17-s + (0.995 − 0.574i)19-s + 0.487i·23-s − 0.998·25-s + (−1.64 + 0.948i)29-s + (−0.893 + 0.516i)31-s + (0.0582 + 0.100i)37-s + (0.515 − 0.892i)41-s + (0.109 + 0.189i)43-s + (−0.213 + 0.369i)47-s + (−1.44 − 0.831i)53-s + 0.0554i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.827 - 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.827 - 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.175019019\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.175019019\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 0.0764T + 5T^{2} \) |
| 11 | \( 1 - 5.38iT - 11T^{2} \) |
| 13 | \( 1 + (-4.60 - 2.65i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.89 - 3.27i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.33 + 2.50i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.33iT - 23T^{2} \) |
| 29 | \( 1 + (8.84 - 5.10i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.97 - 2.87i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.354 - 0.613i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.29 + 5.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.716 - 1.24i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.46 - 2.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (10.4 + 6.05i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.289 + 0.502i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.40 - 1.38i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.63 + 4.56i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.32iT - 71T^{2} \) |
| 73 | \( 1 + (-6.17 - 3.56i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.469 - 0.812i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.49 + 11.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.51 + 2.62i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.18 - 3.56i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.555766786378129487542414366684, −7.55790192560232362731514855055, −7.18764757746605185563282928889, −6.36547650252168320509944346501, −5.60199765040787179534138021784, −4.80909969725965630704984498238, −3.97913058829842787392150343228, −3.38959561653394585902775666418, −1.97226771500967756503373466578, −1.55449456162384735209462609721,
0.30711599072691271137574736038, 1.32403285945678071695111194215, 2.57202407377878418198170846704, 3.48233264572825387147595725802, 3.92305852948332194401132331175, 5.17077685077169775796781530140, 5.95864385693060038453443318527, 6.08890424144124219780425070068, 7.36405838061869091860387575451, 7.934760826136128835151267243822