L(s) = 1 | + 0.0764·5-s + 5.38i·11-s + (4.60 + 2.65i)13-s + (−1.89 + 3.27i)17-s + (4.33 − 2.50i)19-s + 2.33i·23-s − 4.99·25-s + (−8.84 + 5.10i)29-s + (−4.97 + 2.87i)31-s + (0.354 + 0.613i)37-s + (3.29 − 5.71i)41-s + (0.716 + 1.24i)43-s + (−1.46 + 2.53i)47-s + (−10.4 − 6.05i)53-s + 0.411i·55-s + ⋯ |
L(s) = 1 | + 0.0341·5-s + 1.62i·11-s + (1.27 + 0.737i)13-s + (−0.458 + 0.794i)17-s + (0.995 − 0.574i)19-s + 0.487i·23-s − 0.998·25-s + (−1.64 + 0.948i)29-s + (−0.893 + 0.516i)31-s + (0.0582 + 0.100i)37-s + (0.515 − 0.892i)41-s + (0.109 + 0.189i)43-s + (−0.213 + 0.369i)47-s + (−1.44 − 0.831i)53-s + 0.0554i·55-s + ⋯ |
Λ(s)=(=(5292s/2ΓC(s)L(s)(−0.827−0.562i)Λ(2−s)
Λ(s)=(=(5292s/2ΓC(s+1/2)L(s)(−0.827−0.562i)Λ(1−s)
Degree: |
2 |
Conductor: |
5292
= 22⋅33⋅72
|
Sign: |
−0.827−0.562i
|
Analytic conductor: |
42.2568 |
Root analytic conductor: |
6.50052 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5292(2285,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5292, ( :1/2), −0.827−0.562i)
|
Particular Values
L(1) |
≈ |
1.175019019 |
L(21) |
≈ |
1.175019019 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−0.0764T+5T2 |
| 11 | 1−5.38iT−11T2 |
| 13 | 1+(−4.60−2.65i)T+(6.5+11.2i)T2 |
| 17 | 1+(1.89−3.27i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.33+2.50i)T+(9.5−16.4i)T2 |
| 23 | 1−2.33iT−23T2 |
| 29 | 1+(8.84−5.10i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.97−2.87i)T+(15.5−26.8i)T2 |
| 37 | 1+(−0.354−0.613i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−3.29+5.71i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.716−1.24i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.46−2.53i)T+(−23.5−40.7i)T2 |
| 53 | 1+(10.4+6.05i)T+(26.5+45.8i)T2 |
| 59 | 1+(0.289+0.502i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.40−1.38i)T+(30.5+52.8i)T2 |
| 67 | 1+(2.63+4.56i)T+(−33.5+58.0i)T2 |
| 71 | 1+3.32iT−71T2 |
| 73 | 1+(−6.17−3.56i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.469−0.812i)T+(−39.5−68.4i)T2 |
| 83 | 1+(6.49+11.2i)T+(−41.5+71.8i)T2 |
| 89 | 1+(1.51+2.62i)T+(−44.5+77.0i)T2 |
| 97 | 1+(6.18−3.56i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.555766786378129487542414366684, −7.55790192560232362731514855055, −7.18764757746605185563282928889, −6.36547650252168320509944346501, −5.60199765040787179534138021784, −4.80909969725965630704984498238, −3.97913058829842787392150343228, −3.38959561653394585902775666418, −1.97226771500967756503373466578, −1.55449456162384735209462609721,
0.30711599072691271137574736038, 1.32403285945678071695111194215, 2.57202407377878418198170846704, 3.48233264572825387147595725802, 3.92305852948332194401132331175, 5.17077685077169775796781530140, 5.95864385693060038453443318527, 6.08890424144124219780425070068, 7.36405838061869091860387575451, 7.934760826136128835151267243822