Properties

Label 2-5292-63.59-c1-0-24
Degree 22
Conductor 52925292
Sign 0.999+0.0292i0.999 + 0.0292i
Analytic cond. 42.256842.2568
Root an. cond. 6.500526.50052
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.699·5-s + 0.265i·11-s + (1.13 + 0.657i)13-s + (1.86 − 3.22i)17-s + (0.382 − 0.220i)19-s + 4.96i·23-s − 4.51·25-s + (0.273 − 0.157i)29-s + (4.85 − 2.80i)31-s + (−0.351 − 0.608i)37-s + (5.39 − 9.34i)41-s + (3.73 + 6.46i)43-s + (−3.50 + 6.06i)47-s + (8.51 + 4.91i)53-s + 0.185i·55-s + ⋯
L(s)  = 1  + 0.312·5-s + 0.0799i·11-s + (0.315 + 0.182i)13-s + (0.452 − 0.783i)17-s + (0.0877 − 0.0506i)19-s + 1.03i·23-s − 0.902·25-s + (0.0507 − 0.0292i)29-s + (0.872 − 0.503i)31-s + (−0.0577 − 0.0999i)37-s + (0.842 − 1.45i)41-s + (0.569 + 0.985i)43-s + (−0.510 + 0.884i)47-s + (1.17 + 0.675i)53-s + 0.0250i·55-s + ⋯

Functional equation

Λ(s)=(5292s/2ΓC(s)L(s)=((0.999+0.0292i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0292i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(5292s/2ΓC(s+1/2)L(s)=((0.999+0.0292i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0292i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 52925292    =    2233722^{2} \cdot 3^{3} \cdot 7^{2}
Sign: 0.999+0.0292i0.999 + 0.0292i
Analytic conductor: 42.256842.2568
Root analytic conductor: 6.500526.50052
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ5292(2285,)\chi_{5292} (2285, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 5292, ( :1/2), 0.999+0.0292i)(2,\ 5292,\ (\ :1/2),\ 0.999 + 0.0292i)

Particular Values

L(1)L(1) \approx 2.1246245712.124624571
L(12)L(\frac12) \approx 2.1246245712.124624571
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
good5 10.699T+5T2 1 - 0.699T + 5T^{2}
11 10.265iT11T2 1 - 0.265iT - 11T^{2}
13 1+(1.130.657i)T+(6.5+11.2i)T2 1 + (-1.13 - 0.657i)T + (6.5 + 11.2i)T^{2}
17 1+(1.86+3.22i)T+(8.514.7i)T2 1 + (-1.86 + 3.22i)T + (-8.5 - 14.7i)T^{2}
19 1+(0.382+0.220i)T+(9.516.4i)T2 1 + (-0.382 + 0.220i)T + (9.5 - 16.4i)T^{2}
23 14.96iT23T2 1 - 4.96iT - 23T^{2}
29 1+(0.273+0.157i)T+(14.525.1i)T2 1 + (-0.273 + 0.157i)T + (14.5 - 25.1i)T^{2}
31 1+(4.85+2.80i)T+(15.526.8i)T2 1 + (-4.85 + 2.80i)T + (15.5 - 26.8i)T^{2}
37 1+(0.351+0.608i)T+(18.5+32.0i)T2 1 + (0.351 + 0.608i)T + (-18.5 + 32.0i)T^{2}
41 1+(5.39+9.34i)T+(20.535.5i)T2 1 + (-5.39 + 9.34i)T + (-20.5 - 35.5i)T^{2}
43 1+(3.736.46i)T+(21.5+37.2i)T2 1 + (-3.73 - 6.46i)T + (-21.5 + 37.2i)T^{2}
47 1+(3.506.06i)T+(23.540.7i)T2 1 + (3.50 - 6.06i)T + (-23.5 - 40.7i)T^{2}
53 1+(8.514.91i)T+(26.5+45.8i)T2 1 + (-8.51 - 4.91i)T + (26.5 + 45.8i)T^{2}
59 1+(6.73+11.6i)T+(29.5+51.0i)T2 1 + (6.73 + 11.6i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.892.82i)T+(30.5+52.8i)T2 1 + (-4.89 - 2.82i)T + (30.5 + 52.8i)T^{2}
67 1+(2.975.14i)T+(33.5+58.0i)T2 1 + (-2.97 - 5.14i)T + (-33.5 + 58.0i)T^{2}
71 1+13.4iT71T2 1 + 13.4iT - 71T^{2}
73 1+(6.663.84i)T+(36.5+63.2i)T2 1 + (-6.66 - 3.84i)T + (36.5 + 63.2i)T^{2}
79 1+(0.6981.20i)T+(39.568.4i)T2 1 + (0.698 - 1.20i)T + (-39.5 - 68.4i)T^{2}
83 1+(3.726.45i)T+(41.5+71.8i)T2 1 + (-3.72 - 6.45i)T + (-41.5 + 71.8i)T^{2}
89 1+(5.59+9.68i)T+(44.5+77.0i)T2 1 + (5.59 + 9.68i)T + (-44.5 + 77.0i)T^{2}
97 1+(9.185.30i)T+(48.584.0i)T2 1 + (9.18 - 5.30i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.012707334504963324878366755562, −7.58825337084056516307312662952, −6.75133969743058215868509444682, −5.94982954087198942473829606202, −5.41028290813681782797774951898, −4.49694132722452759002058364175, −3.70990213342809434953567145185, −2.80358388811510321820294952068, −1.89741470723225767147183837964, −0.792387376471995345160151300046, 0.809162717040252515480701007743, 1.89712124927151622917344450683, 2.81643078229869747107203754839, 3.73491203085917040513961403018, 4.47411242261938658074555349155, 5.40684412666817898245787926747, 6.04475451910804454965555638086, 6.66303884329664363790901626910, 7.52820636842487378659566979637, 8.318161715970241131763463429485

Graph of the ZZ-function along the critical line