L(s) = 1 | + 0.699·5-s + 0.265i·11-s + (1.13 + 0.657i)13-s + (1.86 − 3.22i)17-s + (0.382 − 0.220i)19-s + 4.96i·23-s − 4.51·25-s + (0.273 − 0.157i)29-s + (4.85 − 2.80i)31-s + (−0.351 − 0.608i)37-s + (5.39 − 9.34i)41-s + (3.73 + 6.46i)43-s + (−3.50 + 6.06i)47-s + (8.51 + 4.91i)53-s + 0.185i·55-s + ⋯ |
L(s) = 1 | + 0.312·5-s + 0.0799i·11-s + (0.315 + 0.182i)13-s + (0.452 − 0.783i)17-s + (0.0877 − 0.0506i)19-s + 1.03i·23-s − 0.902·25-s + (0.0507 − 0.0292i)29-s + (0.872 − 0.503i)31-s + (−0.0577 − 0.0999i)37-s + (0.842 − 1.45i)41-s + (0.569 + 0.985i)43-s + (−0.510 + 0.884i)47-s + (1.17 + 0.675i)53-s + 0.0250i·55-s + ⋯ |
Λ(s)=(=(5292s/2ΓC(s)L(s)(0.999+0.0292i)Λ(2−s)
Λ(s)=(=(5292s/2ΓC(s+1/2)L(s)(0.999+0.0292i)Λ(1−s)
Degree: |
2 |
Conductor: |
5292
= 22⋅33⋅72
|
Sign: |
0.999+0.0292i
|
Analytic conductor: |
42.2568 |
Root analytic conductor: |
6.50052 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5292(2285,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5292, ( :1/2), 0.999+0.0292i)
|
Particular Values
L(1) |
≈ |
2.124624571 |
L(21) |
≈ |
2.124624571 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−0.699T+5T2 |
| 11 | 1−0.265iT−11T2 |
| 13 | 1+(−1.13−0.657i)T+(6.5+11.2i)T2 |
| 17 | 1+(−1.86+3.22i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.382+0.220i)T+(9.5−16.4i)T2 |
| 23 | 1−4.96iT−23T2 |
| 29 | 1+(−0.273+0.157i)T+(14.5−25.1i)T2 |
| 31 | 1+(−4.85+2.80i)T+(15.5−26.8i)T2 |
| 37 | 1+(0.351+0.608i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.39+9.34i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.73−6.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.50−6.06i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−8.51−4.91i)T+(26.5+45.8i)T2 |
| 59 | 1+(6.73+11.6i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.89−2.82i)T+(30.5+52.8i)T2 |
| 67 | 1+(−2.97−5.14i)T+(−33.5+58.0i)T2 |
| 71 | 1+13.4iT−71T2 |
| 73 | 1+(−6.66−3.84i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.698−1.20i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−3.72−6.45i)T+(−41.5+71.8i)T2 |
| 89 | 1+(5.59+9.68i)T+(−44.5+77.0i)T2 |
| 97 | 1+(9.18−5.30i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.012707334504963324878366755562, −7.58825337084056516307312662952, −6.75133969743058215868509444682, −5.94982954087198942473829606202, −5.41028290813681782797774951898, −4.49694132722452759002058364175, −3.70990213342809434953567145185, −2.80358388811510321820294952068, −1.89741470723225767147183837964, −0.792387376471995345160151300046,
0.809162717040252515480701007743, 1.89712124927151622917344450683, 2.81643078229869747107203754839, 3.73491203085917040513961403018, 4.47411242261938658074555349155, 5.40684412666817898245787926747, 6.04475451910804454965555638086, 6.66303884329664363790901626910, 7.52820636842487378659566979637, 8.318161715970241131763463429485