L(s) = 1 | − 1.68·5-s − 3.90i·11-s + (−5.24 + 3.02i)13-s + (0.201 + 0.348i)17-s + (0.145 + 0.0840i)19-s + 8.88i·23-s − 2.15·25-s + (6.15 + 3.55i)29-s + (−5.44 − 3.14i)31-s + (3.13 − 5.42i)37-s + (−1.64 − 2.85i)41-s + (1.80 − 3.12i)43-s + (4.38 + 7.59i)47-s + (4.94 − 2.85i)53-s + 6.58i·55-s + ⋯ |
L(s) = 1 | − 0.753·5-s − 1.17i·11-s + (−1.45 + 0.839i)13-s + (0.0488 + 0.0845i)17-s + (0.0334 + 0.0192i)19-s + 1.85i·23-s − 0.431·25-s + (1.14 + 0.659i)29-s + (−0.977 − 0.564i)31-s + (0.514 − 0.891i)37-s + (−0.257 − 0.445i)41-s + (0.275 − 0.476i)43-s + (0.639 + 1.10i)47-s + (0.679 − 0.392i)53-s + 0.887i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.079184453\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.079184453\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.68T + 5T^{2} \) |
| 11 | \( 1 + 3.90iT - 11T^{2} \) |
| 13 | \( 1 + (5.24 - 3.02i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.201 - 0.348i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.145 - 0.0840i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 8.88iT - 23T^{2} \) |
| 29 | \( 1 + (-6.15 - 3.55i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.44 + 3.14i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.13 + 5.42i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.64 + 2.85i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.80 + 3.12i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.38 - 7.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.94 + 2.85i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.25 + 3.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.43 - 2.56i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.95 + 5.11i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (-6.05 + 3.49i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.603 + 1.04i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.181 - 0.314i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.38 + 2.39i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.508 + 0.293i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.966227886540949747842508761022, −7.45067714065404896616310664036, −6.87198936674749406165331639513, −5.82248634296423849604756311240, −5.28760904152803126974735403605, −4.28777782200910115379908816857, −3.68024235923881465493271781283, −2.82601938134369198790927867397, −1.77965645095662397324478523377, −0.43275791859921606025046852021,
0.68820178676888334508772464950, 2.20685052600403456946550856069, 2.80669795795517919416863689755, 3.92260322012577226335534291468, 4.67707844109641919603748467227, 5.09946764266122086470599524953, 6.24823689992348143190750756539, 6.98190352176965223620011217557, 7.59616623133027606836622565449, 8.103970265145075407528935499603