L(s) = 1 | − 1.68·5-s − 3.90i·11-s + (−5.24 + 3.02i)13-s + (0.201 + 0.348i)17-s + (0.145 + 0.0840i)19-s + 8.88i·23-s − 2.15·25-s + (6.15 + 3.55i)29-s + (−5.44 − 3.14i)31-s + (3.13 − 5.42i)37-s + (−1.64 − 2.85i)41-s + (1.80 − 3.12i)43-s + (4.38 + 7.59i)47-s + (4.94 − 2.85i)53-s + 6.58i·55-s + ⋯ |
L(s) = 1 | − 0.753·5-s − 1.17i·11-s + (−1.45 + 0.839i)13-s + (0.0488 + 0.0845i)17-s + (0.0334 + 0.0192i)19-s + 1.85i·23-s − 0.431·25-s + (1.14 + 0.659i)29-s + (−0.977 − 0.564i)31-s + (0.514 − 0.891i)37-s + (−0.257 − 0.445i)41-s + (0.275 − 0.476i)43-s + (0.639 + 1.10i)47-s + (0.679 − 0.392i)53-s + 0.887i·55-s + ⋯ |
Λ(s)=(=(5292s/2ΓC(s)L(s)(0.756+0.653i)Λ(2−s)
Λ(s)=(=(5292s/2ΓC(s+1/2)L(s)(0.756+0.653i)Λ(1−s)
Degree: |
2 |
Conductor: |
5292
= 22⋅33⋅72
|
Sign: |
0.756+0.653i
|
Analytic conductor: |
42.2568 |
Root analytic conductor: |
6.50052 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5292(4625,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5292, ( :1/2), 0.756+0.653i)
|
Particular Values
L(1) |
≈ |
1.079184453 |
L(21) |
≈ |
1.079184453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+1.68T+5T2 |
| 11 | 1+3.90iT−11T2 |
| 13 | 1+(5.24−3.02i)T+(6.5−11.2i)T2 |
| 17 | 1+(−0.201−0.348i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.145−0.0840i)T+(9.5+16.4i)T2 |
| 23 | 1−8.88iT−23T2 |
| 29 | 1+(−6.15−3.55i)T+(14.5+25.1i)T2 |
| 31 | 1+(5.44+3.14i)T+(15.5+26.8i)T2 |
| 37 | 1+(−3.13+5.42i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.64+2.85i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.80+3.12i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−4.38−7.59i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.94+2.85i)T+(26.5−45.8i)T2 |
| 59 | 1+(−2.25+3.89i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.43−2.56i)T+(30.5−52.8i)T2 |
| 67 | 1+(−2.95+5.11i)T+(−33.5−58.0i)T2 |
| 71 | 1−11.4iT−71T2 |
| 73 | 1+(−6.05+3.49i)T+(36.5−63.2i)T2 |
| 79 | 1+(0.603+1.04i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.181−0.314i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−1.38+2.39i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.508+0.293i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.966227886540949747842508761022, −7.45067714065404896616310664036, −6.87198936674749406165331639513, −5.82248634296423849604756311240, −5.28760904152803126974735403605, −4.28777782200910115379908816857, −3.68024235923881465493271781283, −2.82601938134369198790927867397, −1.77965645095662397324478523377, −0.43275791859921606025046852021,
0.68820178676888334508772464950, 2.20685052600403456946550856069, 2.80669795795517919416863689755, 3.92260322012577226335534291468, 4.67707844109641919603748467227, 5.09946764266122086470599524953, 6.24823689992348143190750756539, 6.98190352176965223620011217557, 7.59616623133027606836622565449, 8.103970265145075407528935499603