Properties

Label 2-5292-63.47-c1-0-17
Degree 22
Conductor 52925292
Sign 0.756+0.653i0.756 + 0.653i
Analytic cond. 42.256842.2568
Root an. cond. 6.500526.50052
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.68·5-s − 3.90i·11-s + (−5.24 + 3.02i)13-s + (0.201 + 0.348i)17-s + (0.145 + 0.0840i)19-s + 8.88i·23-s − 2.15·25-s + (6.15 + 3.55i)29-s + (−5.44 − 3.14i)31-s + (3.13 − 5.42i)37-s + (−1.64 − 2.85i)41-s + (1.80 − 3.12i)43-s + (4.38 + 7.59i)47-s + (4.94 − 2.85i)53-s + 6.58i·55-s + ⋯
L(s)  = 1  − 0.753·5-s − 1.17i·11-s + (−1.45 + 0.839i)13-s + (0.0488 + 0.0845i)17-s + (0.0334 + 0.0192i)19-s + 1.85i·23-s − 0.431·25-s + (1.14 + 0.659i)29-s + (−0.977 − 0.564i)31-s + (0.514 − 0.891i)37-s + (−0.257 − 0.445i)41-s + (0.275 − 0.476i)43-s + (0.639 + 1.10i)47-s + (0.679 − 0.392i)53-s + 0.887i·55-s + ⋯

Functional equation

Λ(s)=(5292s/2ΓC(s)L(s)=((0.756+0.653i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(5292s/2ΓC(s+1/2)L(s)=((0.756+0.653i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 52925292    =    2233722^{2} \cdot 3^{3} \cdot 7^{2}
Sign: 0.756+0.653i0.756 + 0.653i
Analytic conductor: 42.256842.2568
Root analytic conductor: 6.500526.50052
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ5292(4625,)\chi_{5292} (4625, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 5292, ( :1/2), 0.756+0.653i)(2,\ 5292,\ (\ :1/2),\ 0.756 + 0.653i)

Particular Values

L(1)L(1) \approx 1.0791844531.079184453
L(12)L(\frac12) \approx 1.0791844531.079184453
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
good5 1+1.68T+5T2 1 + 1.68T + 5T^{2}
11 1+3.90iT11T2 1 + 3.90iT - 11T^{2}
13 1+(5.243.02i)T+(6.511.2i)T2 1 + (5.24 - 3.02i)T + (6.5 - 11.2i)T^{2}
17 1+(0.2010.348i)T+(8.5+14.7i)T2 1 + (-0.201 - 0.348i)T + (-8.5 + 14.7i)T^{2}
19 1+(0.1450.0840i)T+(9.5+16.4i)T2 1 + (-0.145 - 0.0840i)T + (9.5 + 16.4i)T^{2}
23 18.88iT23T2 1 - 8.88iT - 23T^{2}
29 1+(6.153.55i)T+(14.5+25.1i)T2 1 + (-6.15 - 3.55i)T + (14.5 + 25.1i)T^{2}
31 1+(5.44+3.14i)T+(15.5+26.8i)T2 1 + (5.44 + 3.14i)T + (15.5 + 26.8i)T^{2}
37 1+(3.13+5.42i)T+(18.532.0i)T2 1 + (-3.13 + 5.42i)T + (-18.5 - 32.0i)T^{2}
41 1+(1.64+2.85i)T+(20.5+35.5i)T2 1 + (1.64 + 2.85i)T + (-20.5 + 35.5i)T^{2}
43 1+(1.80+3.12i)T+(21.537.2i)T2 1 + (-1.80 + 3.12i)T + (-21.5 - 37.2i)T^{2}
47 1+(4.387.59i)T+(23.5+40.7i)T2 1 + (-4.38 - 7.59i)T + (-23.5 + 40.7i)T^{2}
53 1+(4.94+2.85i)T+(26.545.8i)T2 1 + (-4.94 + 2.85i)T + (26.5 - 45.8i)T^{2}
59 1+(2.25+3.89i)T+(29.551.0i)T2 1 + (-2.25 + 3.89i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.432.56i)T+(30.552.8i)T2 1 + (4.43 - 2.56i)T + (30.5 - 52.8i)T^{2}
67 1+(2.95+5.11i)T+(33.558.0i)T2 1 + (-2.95 + 5.11i)T + (-33.5 - 58.0i)T^{2}
71 111.4iT71T2 1 - 11.4iT - 71T^{2}
73 1+(6.05+3.49i)T+(36.563.2i)T2 1 + (-6.05 + 3.49i)T + (36.5 - 63.2i)T^{2}
79 1+(0.603+1.04i)T+(39.5+68.4i)T2 1 + (0.603 + 1.04i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.1810.314i)T+(41.571.8i)T2 1 + (0.181 - 0.314i)T + (-41.5 - 71.8i)T^{2}
89 1+(1.38+2.39i)T+(44.577.0i)T2 1 + (-1.38 + 2.39i)T + (-44.5 - 77.0i)T^{2}
97 1+(0.508+0.293i)T+(48.5+84.0i)T2 1 + (0.508 + 0.293i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.966227886540949747842508761022, −7.45067714065404896616310664036, −6.87198936674749406165331639513, −5.82248634296423849604756311240, −5.28760904152803126974735403605, −4.28777782200910115379908816857, −3.68024235923881465493271781283, −2.82601938134369198790927867397, −1.77965645095662397324478523377, −0.43275791859921606025046852021, 0.68820178676888334508772464950, 2.20685052600403456946550856069, 2.80669795795517919416863689755, 3.92260322012577226335534291468, 4.67707844109641919603748467227, 5.09946764266122086470599524953, 6.24823689992348143190750756539, 6.98190352176965223620011217557, 7.59616623133027606836622565449, 8.103970265145075407528935499603

Graph of the ZZ-function along the critical line