L(s) = 1 | + (1.94 − 3.37i)5-s + (2.18 + 3.78i)11-s + (−0.792 + 1.37i)13-s + 5.33·17-s − 4.64·19-s + (0.183 − 0.318i)23-s + (−5.07 − 8.79i)25-s + (5.08 + 8.81i)29-s + (1.14 − 1.98i)31-s + 10.8·37-s + (0.690 − 1.19i)41-s + (3.81 + 6.61i)43-s + (−3.80 − 6.58i)47-s + 0.925·53-s + 17.0·55-s + ⋯ |
L(s) = 1 | + (0.870 − 1.50i)5-s + (0.659 + 1.14i)11-s + (−0.219 + 0.380i)13-s + 1.29·17-s − 1.06·19-s + (0.0383 − 0.0664i)23-s + (−1.01 − 1.75i)25-s + (0.944 + 1.63i)29-s + (0.206 − 0.357i)31-s + 1.78·37-s + (0.107 − 0.186i)41-s + (0.582 + 1.00i)43-s + (−0.554 − 0.961i)47-s + 0.127·53-s + 2.29·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 + 0.371i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 + 0.371i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.589920816\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.589920816\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.94 + 3.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.18 - 3.78i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.792 - 1.37i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.33T + 17T^{2} \) |
| 19 | \( 1 + 4.64T + 19T^{2} \) |
| 23 | \( 1 + (-0.183 + 0.318i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.08 - 8.81i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.14 + 1.98i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 10.8T + 37T^{2} \) |
| 41 | \( 1 + (-0.690 + 1.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.81 - 6.61i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.80 + 6.58i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 0.925T + 53T^{2} \) |
| 59 | \( 1 + (0.460 - 0.797i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.27 + 5.67i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.50 - 12.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.91T + 71T^{2} \) |
| 73 | \( 1 - 7.56T + 73T^{2} \) |
| 79 | \( 1 + (0.987 + 1.71i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.253 - 0.438i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 12.2T + 89T^{2} \) |
| 97 | \( 1 + (-4.45 - 7.71i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.266897219230684081090315462929, −7.51467560706438317602817537490, −6.57086193760047084163211043304, −5.99745402260862591804948063610, −5.06048257605267736581024313889, −4.65906679062242654198244971451, −3.89405363794656840669277229520, −2.55114032450808069368796815980, −1.65876900884437433584702086088, −0.967597710416652193236394051550,
0.864595929329807412601138768252, 2.15560738196045678047673368989, 2.90072491885599893619297567392, 3.50427417011230386875216486448, 4.49962889139576392205181393986, 5.71527150977619267520991763859, 6.14761854583483919240322108383, 6.54148589494891498467609808109, 7.57308337770889711317870029681, 8.063740219149057541313030307357