L(s) = 1 | + (−1.43 + 2.48i)5-s + (−2.34 + 1.35i)11-s + (−3.18 − 1.84i)13-s + 6.44·17-s − 3.16i·19-s + (2.59 + 1.49i)23-s + (−1.61 − 2.79i)25-s + (2.48 − 1.43i)29-s + (8.26 + 4.77i)31-s + 3.41·37-s + (0.794 − 1.37i)41-s + (−4.67 − 8.10i)43-s + (5.65 + 9.79i)47-s − 2.49i·53-s − 7.78i·55-s + ⋯ |
L(s) = 1 | + (−0.641 + 1.11i)5-s + (−0.708 + 0.408i)11-s + (−0.884 − 0.510i)13-s + 1.56·17-s − 0.725i·19-s + (0.540 + 0.311i)23-s + (−0.322 − 0.558i)25-s + (0.461 − 0.266i)29-s + (1.48 + 0.857i)31-s + 0.561·37-s + (0.124 − 0.214i)41-s + (−0.713 − 1.23i)43-s + (0.824 + 1.42i)47-s − 0.343i·53-s − 1.04i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.413 - 0.910i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.413 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.241127133\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.241127133\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.43 - 2.48i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.34 - 1.35i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.18 + 1.84i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 6.44T + 17T^{2} \) |
| 19 | \( 1 + 3.16iT - 19T^{2} \) |
| 23 | \( 1 + (-2.59 - 1.49i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.48 + 1.43i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-8.26 - 4.77i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.41T + 37T^{2} \) |
| 41 | \( 1 + (-0.794 + 1.37i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.67 + 8.10i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.65 - 9.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.49iT - 53T^{2} \) |
| 59 | \( 1 + (4.33 - 7.51i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.566 - 0.327i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.86 - 6.68i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.86iT - 71T^{2} \) |
| 73 | \( 1 - 12.7iT - 73T^{2} \) |
| 79 | \( 1 + (2.59 + 4.49i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.92 - 13.7i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 6.29T + 89T^{2} \) |
| 97 | \( 1 + (13.2 - 7.62i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.135281237152345108846102809861, −7.61550813510102387785277306064, −7.16244831665860290506514652402, −6.42324999648842468397400948511, −5.42552665909647400203727579559, −4.85123927367242815290860938931, −3.85359156909644916844339728271, −2.85702715619733774145722789366, −2.67547689575545770805956359654, −1.01114665715352291852308494926,
0.40506391531865521643417795532, 1.34679348542437228017759095639, 2.62632059083713386807110010693, 3.45435311099470440332507730452, 4.46438448901870411491737464945, 4.91321074149949937171477724382, 5.67915536195340713216391463621, 6.49083177794563522856542592125, 7.56146473652016780819691879418, 7.967637636664778989956890839641