L(s) = 1 | + (1.02 − 1.77i)3-s − 2.32·5-s + (−0.804 − 2.52i)7-s + (−0.609 − 1.05i)9-s + (−1.44 − 2.49i)11-s + (−0.126 + 0.219i)13-s + (−2.38 + 4.13i)15-s + (−2.14 + 3.71i)17-s + (−3.08 − 3.07i)19-s + (−5.30 − 1.15i)21-s + (−0.926 − 1.60i)23-s + 0.399·25-s + 3.65·27-s + (0.114 − 0.199i)29-s + (−4.46 − 7.73i)31-s + ⋯ |
L(s) = 1 | + (0.592 − 1.02i)3-s − 1.03·5-s + (−0.303 − 0.952i)7-s + (−0.203 − 0.351i)9-s + (−0.434 − 0.752i)11-s + (−0.0350 + 0.0607i)13-s + (−0.616 + 1.06i)15-s + (−0.519 + 0.900i)17-s + (−0.707 − 0.706i)19-s + (−1.15 − 0.252i)21-s + (−0.193 − 0.334i)23-s + 0.0798·25-s + 0.704·27-s + (0.0213 − 0.0369i)29-s + (−0.801 − 1.38i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.912 + 0.409i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.912 + 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.202160 - 0.943319i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.202160 - 0.943319i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.804 + 2.52i)T \) |
| 19 | \( 1 + (3.08 + 3.07i)T \) |
good | 3 | \( 1 + (-1.02 + 1.77i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.32T + 5T^{2} \) |
| 11 | \( 1 + (1.44 + 2.49i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.126 - 0.219i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.14 - 3.71i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.926 + 1.60i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.114 + 0.199i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.46 + 7.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.34 + 5.80i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.50 - 9.53i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.09 - 3.62i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.61 + 7.99i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.63T + 53T^{2} \) |
| 59 | \( 1 + (0.351 - 0.608i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.19 + 8.98i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 - 10.1T + 67T^{2} \) |
| 71 | \( 1 + (1.57 + 2.72i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.48 + 6.03i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 15.9T + 79T^{2} \) |
| 83 | \( 1 - 5.34T + 83T^{2} \) |
| 89 | \( 1 + (-1.53 - 2.66i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.80 + 11.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77190909612069317551444660071, −9.427073963706286224619922104553, −8.219035205876954078239487341131, −7.908900981269931580130792961496, −7.01234797174486410887663575251, −6.16587615637386606697608460449, −4.45588020045093140429281636415, −3.57959478931039603925445838423, −2.25459845731733058026308325112, −0.50714348904975422759098615716,
2.45609162453092156430452731459, 3.55654279440074419731740476251, 4.41852493561199756847949320626, 5.39353633202998682681040387242, 6.80415577368535854649862277613, 7.83504756968586306380081868369, 8.724139142375890055864385483960, 9.380960180921460277208555307885, 10.22248624328120474478790531564, 11.12001732857196545225460228898