L(s) = 1 | + 2·7-s − 9-s − 12·23-s + 10·25-s − 16·31-s − 24·41-s − 24·47-s + 3·49-s − 2·63-s + 12·71-s + 20·73-s + 8·79-s + 81-s − 24·89-s − 20·97-s + 16·103-s − 12·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 24·161-s + 163-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 1/3·9-s − 2.50·23-s + 2·25-s − 2.87·31-s − 3.74·41-s − 3.50·47-s + 3/7·49-s − 0.251·63-s + 1.42·71-s + 2.34·73-s + 0.900·79-s + 1/9·81-s − 2.54·89-s − 2.03·97-s + 1.57·103-s − 1.12·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 1.89·161-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(28901376s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(28901376s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
28901376
= 216⋅32⋅72
|
Sign: |
1
|
Analytic conductor: |
1842.77 |
Root analytic conductor: |
6.55191 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 28901376, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 7 | C1 | (1−T)2 |
good | 5 | C2 | (1−pT2)2 |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+12T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−pT2)2 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−4T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.983081919844388091019770191939, −7.942696774340037832322275123907, −7.16871189149650957205261704801, −6.89595211369618080201968592524, −6.60145928989985901456930619813, −6.39204791689497160412699890303, −5.57844285564960434267849504143, −5.54229606706781697400865913072, −5.02742272292131235884624338243, −4.87548881225291001669457992762, −4.37511585051108608285918087555, −3.72163334974701637072978281481, −3.46445598051237037944234230449, −3.32011788639021068020984106117, −2.44472394532890852593298668173, −2.06875207797482378266165752435, −1.64127100441604991309627763858, −1.29227534929850042669879402250, 0, 0,
1.29227534929850042669879402250, 1.64127100441604991309627763858, 2.06875207797482378266165752435, 2.44472394532890852593298668173, 3.32011788639021068020984106117, 3.46445598051237037944234230449, 3.72163334974701637072978281481, 4.37511585051108608285918087555, 4.87548881225291001669457992762, 5.02742272292131235884624338243, 5.54229606706781697400865913072, 5.57844285564960434267849504143, 6.39204791689497160412699890303, 6.60145928989985901456930619813, 6.89595211369618080201968592524, 7.16871189149650957205261704801, 7.942696774340037832322275123907, 7.983081919844388091019770191939