L(s) = 1 | − i·2-s − 1.53i·3-s − 4-s + 3.51·5-s − 1.53·6-s + 1.46i·7-s + i·8-s + 0.641·9-s − 3.51i·10-s + 2.87·11-s + 1.53i·12-s + 1.66·13-s + 1.46·14-s − 5.40i·15-s + 16-s − 0.593i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.886i·3-s − 0.5·4-s + 1.57·5-s − 0.626·6-s + 0.553i·7-s + 0.353i·8-s + 0.213·9-s − 1.11i·10-s + 0.865·11-s + 0.443i·12-s + 0.460·13-s + 0.391·14-s − 1.39i·15-s + 0.250·16-s − 0.143i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0996 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0996 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41291 - 1.27854i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41291 - 1.27854i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 269 | \( 1 + (-16.3 + 1.63i)T \) |
good | 3 | \( 1 + 1.53iT - 3T^{2} \) |
| 5 | \( 1 - 3.51T + 5T^{2} \) |
| 7 | \( 1 - 1.46iT - 7T^{2} \) |
| 11 | \( 1 - 2.87T + 11T^{2} \) |
| 13 | \( 1 - 1.66T + 13T^{2} \) |
| 17 | \( 1 + 0.593iT - 17T^{2} \) |
| 19 | \( 1 - 4.67iT - 19T^{2} \) |
| 23 | \( 1 + 3.91T + 23T^{2} \) |
| 29 | \( 1 + 6.42iT - 29T^{2} \) |
| 31 | \( 1 - 7.26iT - 31T^{2} \) |
| 37 | \( 1 + 9.91T + 37T^{2} \) |
| 41 | \( 1 + 4.88T + 41T^{2} \) |
| 43 | \( 1 + 12.5T + 43T^{2} \) |
| 47 | \( 1 + 5.42T + 47T^{2} \) |
| 53 | \( 1 - 5.55T + 53T^{2} \) |
| 59 | \( 1 + 11.1iT - 59T^{2} \) |
| 61 | \( 1 + 4.34T + 61T^{2} \) |
| 67 | \( 1 + 6.51T + 67T^{2} \) |
| 71 | \( 1 + 8.19iT - 71T^{2} \) |
| 73 | \( 1 - 1.03T + 73T^{2} \) |
| 79 | \( 1 - 4.28T + 79T^{2} \) |
| 83 | \( 1 - 16.7iT - 83T^{2} \) |
| 89 | \( 1 - 6.07T + 89T^{2} \) |
| 97 | \( 1 - 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37938810237226794935334656219, −9.907775375249318918737801875358, −8.985486193702039436270796183492, −8.147643554941743646842793950155, −6.69877519558436893027844618275, −6.11807041532103573916434014428, −5.10010505608381989486651356053, −3.55404846017821729785672213438, −2.03408527579213566819331891315, −1.52660865951433510631966602581,
1.62219150454502880701789499477, 3.50995385223220903134250914850, 4.58070784953288673384181642523, 5.47099923174319052689621031271, 6.44595198047561979362505806061, 7.14524400852132381995797635590, 8.703179281467601625254239522040, 9.249081290331785530193773807641, 10.12018606574832443062530698080, 10.51644031564366691109144307225