L(s) = 1 | − i·2-s − 1.53i·3-s − 4-s + 3.51·5-s − 1.53·6-s + 1.46i·7-s + i·8-s + 0.641·9-s − 3.51i·10-s + 2.87·11-s + 1.53i·12-s + 1.66·13-s + 1.46·14-s − 5.40i·15-s + 16-s − 0.593i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.886i·3-s − 0.5·4-s + 1.57·5-s − 0.626·6-s + 0.553i·7-s + 0.353i·8-s + 0.213·9-s − 1.11i·10-s + 0.865·11-s + 0.443i·12-s + 0.460·13-s + 0.391·14-s − 1.39i·15-s + 0.250·16-s − 0.143i·17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.0996+0.995i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.0996+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.0996+0.995i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(537,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.0996+0.995i)
|
Particular Values
L(1) |
≈ |
1.41291−1.27854i |
L(21) |
≈ |
1.41291−1.27854i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 269 | 1+(−16.3+1.63i)T |
good | 3 | 1+1.53iT−3T2 |
| 5 | 1−3.51T+5T2 |
| 7 | 1−1.46iT−7T2 |
| 11 | 1−2.87T+11T2 |
| 13 | 1−1.66T+13T2 |
| 17 | 1+0.593iT−17T2 |
| 19 | 1−4.67iT−19T2 |
| 23 | 1+3.91T+23T2 |
| 29 | 1+6.42iT−29T2 |
| 31 | 1−7.26iT−31T2 |
| 37 | 1+9.91T+37T2 |
| 41 | 1+4.88T+41T2 |
| 43 | 1+12.5T+43T2 |
| 47 | 1+5.42T+47T2 |
| 53 | 1−5.55T+53T2 |
| 59 | 1+11.1iT−59T2 |
| 61 | 1+4.34T+61T2 |
| 67 | 1+6.51T+67T2 |
| 71 | 1+8.19iT−71T2 |
| 73 | 1−1.03T+73T2 |
| 79 | 1−4.28T+79T2 |
| 83 | 1−16.7iT−83T2 |
| 89 | 1−6.07T+89T2 |
| 97 | 1−12.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37938810237226794935334656219, −9.907775375249318918737801875358, −8.985486193702039436270796183492, −8.147643554941743646842793950155, −6.69877519558436893027844618275, −6.11807041532103573916434014428, −5.10010505608381989486651356053, −3.55404846017821729785672213438, −2.03408527579213566819331891315, −1.52660865951433510631966602581,
1.62219150454502880701789499477, 3.50995385223220903134250914850, 4.58070784953288673384181642523, 5.47099923174319052689621031271, 6.44595198047561979362505806061, 7.14524400852132381995797635590, 8.703179281467601625254239522040, 9.249081290331785530193773807641, 10.12018606574832443062530698080, 10.51644031564366691109144307225