L(s) = 1 | + (−1 − i)2-s + (−4.16 − 4.16i)3-s + 2i·4-s − 6.39·5-s + 8.33i·6-s + (−6.86 + 6.86i)7-s + (2 − 2i)8-s + 25.7i·9-s + (6.39 + 6.39i)10-s − 13.6i·11-s + (8.33 − 8.33i)12-s + 20.6i·13-s + 13.7·14-s + (26.6 + 26.6i)15-s − 4·16-s + (−12.6 − 12.6i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−1.38 − 1.38i)3-s + 0.5i·4-s − 1.27·5-s + 1.38i·6-s + (−0.981 + 0.981i)7-s + (0.250 − 0.250i)8-s + 2.85i·9-s + (0.639 + 0.639i)10-s − 1.23i·11-s + (0.694 − 0.694i)12-s + 1.58i·13-s + 0.981·14-s + (1.77 + 1.77i)15-s − 0.250·16-s + (−0.742 − 0.742i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.205+0.978i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(−0.205+0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.205+0.978i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(187,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), −0.205+0.978i)
|
Particular Values
L(23) |
≈ |
0.1377892030 |
L(21) |
≈ |
0.1377892030 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+i)T |
| 269 | 1+(−260.+66.7i)T |
good | 3 | 1+(4.16+4.16i)T+9iT2 |
| 5 | 1+6.39T+25T2 |
| 7 | 1+(6.86−6.86i)T−49iT2 |
| 11 | 1+13.6iT−121T2 |
| 13 | 1−20.6iT−169T2 |
| 17 | 1+(12.6+12.6i)T+289iT2 |
| 19 | 1+(−7.34+7.34i)T−361iT2 |
| 23 | 1+24.6T+529T2 |
| 29 | 1+(33.1−33.1i)T−841iT2 |
| 31 | 1+(24.0−24.0i)T−961iT2 |
| 37 | 1−14.3T+1.36e3T2 |
| 41 | 1+16.7T+1.68e3T2 |
| 43 | 1−59.3iT−1.84e3T2 |
| 47 | 1+38.1T+2.20e3T2 |
| 53 | 1+80.2T+2.80e3T2 |
| 59 | 1+(−30.6+30.6i)T−3.48e3iT2 |
| 61 | 1−44.1T+3.72e3T2 |
| 67 | 1+70.1T+4.48e3T2 |
| 71 | 1+(−69.2+69.2i)T−5.04e3iT2 |
| 73 | 1+23.2iT−5.32e3T2 |
| 79 | 1+85.9iT−6.24e3T2 |
| 83 | 1+(−19.2+19.2i)T−6.88e3iT2 |
| 89 | 1+99.4iT−7.92e3T2 |
| 97 | 1+40.2iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95587273704442995935731655943, −9.386221558361746291652771183432, −8.521288224746863164180482025976, −7.54383913668963749022686229576, −6.75412217010387425790887272805, −6.05690845717952754217966944091, −4.79326917445691444604210913837, −3.24121527300247061748122171723, −1.82968379296503967318778428120, −0.22569720990034555116882429828,
0.38024788179736110048736649373, 3.77747512255128337056463563940, 4.07749919839283340367046228778, 5.32474585405366696602306979524, 6.24937463887289109544242995701, 7.20163814617622014050878055931, 8.057982073247081560730908247949, 9.551462344974473820328897136619, 10.01619486933192417969049141811, 10.65741974097457166026194167430