Properties

Label 2-538-1.1-c3-0-16
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $31.7430$
Root an. cond. $5.63409$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 8.60·3-s + 4·4-s + 0.977·5-s + 17.2·6-s + 26.8·7-s − 8·8-s + 47.0·9-s − 1.95·10-s + 37.8·11-s − 34.4·12-s + 67.8·13-s − 53.6·14-s − 8.41·15-s + 16·16-s + 26.7·17-s − 94.1·18-s + 52.8·19-s + 3.91·20-s − 230.·21-s − 75.6·22-s + 103.·23-s + 68.8·24-s − 124.·25-s − 135.·26-s − 172.·27-s + 107.·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.65·3-s + 0.5·4-s + 0.0874·5-s + 1.17·6-s + 1.44·7-s − 0.353·8-s + 1.74·9-s − 0.0618·10-s + 1.03·11-s − 0.828·12-s + 1.44·13-s − 1.02·14-s − 0.144·15-s + 0.250·16-s + 0.381·17-s − 1.23·18-s + 0.638·19-s + 0.0437·20-s − 2.39·21-s − 0.732·22-s + 0.939·23-s + 0.585·24-s − 0.992·25-s − 1.02·26-s − 1.23·27-s + 0.724·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(31.7430\)
Root analytic conductor: \(5.63409\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.186021491\)
\(L(\frac12)\) \(\approx\) \(1.186021491\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
269 \( 1 + 269T \)
good3 \( 1 + 8.60T + 27T^{2} \)
5 \( 1 - 0.977T + 125T^{2} \)
7 \( 1 - 26.8T + 343T^{2} \)
11 \( 1 - 37.8T + 1.33e3T^{2} \)
13 \( 1 - 67.8T + 2.19e3T^{2} \)
17 \( 1 - 26.7T + 4.91e3T^{2} \)
19 \( 1 - 52.8T + 6.85e3T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 - 44.7T + 2.43e4T^{2} \)
31 \( 1 + 126.T + 2.97e4T^{2} \)
37 \( 1 + 63.7T + 5.06e4T^{2} \)
41 \( 1 - 474.T + 6.89e4T^{2} \)
43 \( 1 + 365.T + 7.95e4T^{2} \)
47 \( 1 + 146.T + 1.03e5T^{2} \)
53 \( 1 - 201.T + 1.48e5T^{2} \)
59 \( 1 + 36.7T + 2.05e5T^{2} \)
61 \( 1 + 231.T + 2.26e5T^{2} \)
67 \( 1 - 561.T + 3.00e5T^{2} \)
71 \( 1 - 866.T + 3.57e5T^{2} \)
73 \( 1 - 19.0T + 3.89e5T^{2} \)
79 \( 1 + 925.T + 4.93e5T^{2} \)
83 \( 1 - 1.28e3T + 5.71e5T^{2} \)
89 \( 1 + 245.T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74154442230112592995237556322, −9.656429162741775003919539801626, −8.657844692267166008093178427562, −7.67572615483943247196251646406, −6.68683689596583351418894437764, −5.85216271616979485384299874929, −5.05006444359746864079907484517, −3.85641882587468177664289946305, −1.57380169961291688528678283148, −0.920809298679629953240507495640, 0.920809298679629953240507495640, 1.57380169961291688528678283148, 3.85641882587468177664289946305, 5.05006444359746864079907484517, 5.85216271616979485384299874929, 6.68683689596583351418894437764, 7.67572615483943247196251646406, 8.657844692267166008093178427562, 9.656429162741775003919539801626, 10.74154442230112592995237556322

Graph of the $Z$-function along the critical line