L(s) = 1 | − 2·2-s − 8.60·3-s + 4·4-s + 0.977·5-s + 17.2·6-s + 26.8·7-s − 8·8-s + 47.0·9-s − 1.95·10-s + 37.8·11-s − 34.4·12-s + 67.8·13-s − 53.6·14-s − 8.41·15-s + 16·16-s + 26.7·17-s − 94.1·18-s + 52.8·19-s + 3.91·20-s − 230.·21-s − 75.6·22-s + 103.·23-s + 68.8·24-s − 124.·25-s − 135.·26-s − 172.·27-s + 107.·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.65·3-s + 0.5·4-s + 0.0874·5-s + 1.17·6-s + 1.44·7-s − 0.353·8-s + 1.74·9-s − 0.0618·10-s + 1.03·11-s − 0.828·12-s + 1.44·13-s − 1.02·14-s − 0.144·15-s + 0.250·16-s + 0.381·17-s − 1.23·18-s + 0.638·19-s + 0.0437·20-s − 2.39·21-s − 0.732·22-s + 0.939·23-s + 0.585·24-s − 0.992·25-s − 1.02·26-s − 1.23·27-s + 0.724·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(538s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.186021491 |
L(21) |
≈ |
1.186021491 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 269 | 1+269T |
good | 3 | 1+8.60T+27T2 |
| 5 | 1−0.977T+125T2 |
| 7 | 1−26.8T+343T2 |
| 11 | 1−37.8T+1.33e3T2 |
| 13 | 1−67.8T+2.19e3T2 |
| 17 | 1−26.7T+4.91e3T2 |
| 19 | 1−52.8T+6.85e3T2 |
| 23 | 1−103.T+1.21e4T2 |
| 29 | 1−44.7T+2.43e4T2 |
| 31 | 1+126.T+2.97e4T2 |
| 37 | 1+63.7T+5.06e4T2 |
| 41 | 1−474.T+6.89e4T2 |
| 43 | 1+365.T+7.95e4T2 |
| 47 | 1+146.T+1.03e5T2 |
| 53 | 1−201.T+1.48e5T2 |
| 59 | 1+36.7T+2.05e5T2 |
| 61 | 1+231.T+2.26e5T2 |
| 67 | 1−561.T+3.00e5T2 |
| 71 | 1−866.T+3.57e5T2 |
| 73 | 1−19.0T+3.89e5T2 |
| 79 | 1+925.T+4.93e5T2 |
| 83 | 1−1.28e3T+5.71e5T2 |
| 89 | 1+245.T+7.04e5T2 |
| 97 | 1+1.21e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74154442230112592995237556322, −9.656429162741775003919539801626, −8.657844692267166008093178427562, −7.67572615483943247196251646406, −6.68683689596583351418894437764, −5.85216271616979485384299874929, −5.05006444359746864079907484517, −3.85641882587468177664289946305, −1.57380169961291688528678283148, −0.920809298679629953240507495640,
0.920809298679629953240507495640, 1.57380169961291688528678283148, 3.85641882587468177664289946305, 5.05006444359746864079907484517, 5.85216271616979485384299874929, 6.68683689596583351418894437764, 7.67572615483943247196251646406, 8.657844692267166008093178427562, 9.656429162741775003919539801626, 10.74154442230112592995237556322