L(s) = 1 | + 2·2-s + 10.0·3-s + 4·4-s + 8.61·5-s + 20.0·6-s − 13.5·7-s + 8·8-s + 73.0·9-s + 17.2·10-s + 28.7·11-s + 40.0·12-s + 57.0·13-s − 27.1·14-s + 86.1·15-s + 16·16-s − 79.9·17-s + 146.·18-s − 123.·19-s + 34.4·20-s − 135.·21-s + 57.5·22-s − 32.1·23-s + 80.0·24-s − 50.7·25-s + 114.·26-s + 460.·27-s − 54.3·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.92·3-s + 0.5·4-s + 0.770·5-s + 1.36·6-s − 0.733·7-s + 0.353·8-s + 2.70·9-s + 0.544·10-s + 0.789·11-s + 0.962·12-s + 1.21·13-s − 0.518·14-s + 1.48·15-s + 0.250·16-s − 1.14·17-s + 1.91·18-s − 1.49·19-s + 0.385·20-s − 1.41·21-s + 0.558·22-s − 0.291·23-s + 0.680·24-s − 0.406·25-s + 0.860·26-s + 3.27·27-s − 0.366·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(538s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
6.755431605 |
L(21) |
≈ |
6.755431605 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 269 | 1−269T |
good | 3 | 1−10.0T+27T2 |
| 5 | 1−8.61T+125T2 |
| 7 | 1+13.5T+343T2 |
| 11 | 1−28.7T+1.33e3T2 |
| 13 | 1−57.0T+2.19e3T2 |
| 17 | 1+79.9T+4.91e3T2 |
| 19 | 1+123.T+6.85e3T2 |
| 23 | 1+32.1T+1.21e4T2 |
| 29 | 1+267.T+2.43e4T2 |
| 31 | 1+208.T+2.97e4T2 |
| 37 | 1−150.T+5.06e4T2 |
| 41 | 1−326.T+6.89e4T2 |
| 43 | 1−111.T+7.95e4T2 |
| 47 | 1−133.T+1.03e5T2 |
| 53 | 1−356.T+1.48e5T2 |
| 59 | 1+303.T+2.05e5T2 |
| 61 | 1−567.T+2.26e5T2 |
| 67 | 1−40.4T+3.00e5T2 |
| 71 | 1+222.T+3.57e5T2 |
| 73 | 1+816.T+3.89e5T2 |
| 79 | 1−419.T+4.93e5T2 |
| 83 | 1+238.T+5.71e5T2 |
| 89 | 1−1.07e3T+7.04e5T2 |
| 97 | 1−1.20e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25349858252450358456894296230, −9.134618760643616249972060024343, −8.996757049523995618693885163087, −7.74689152132039213379466816284, −6.70709839665970894271122033566, −5.99152921776377006773536980692, −4.12012795841667039327487157973, −3.74563845988830867774497259019, −2.44068385508487015405874461248, −1.72318425283666642663390960677,
1.72318425283666642663390960677, 2.44068385508487015405874461248, 3.74563845988830867774497259019, 4.12012795841667039327487157973, 5.99152921776377006773536980692, 6.70709839665970894271122033566, 7.74689152132039213379466816284, 8.996757049523995618693885163087, 9.134618760643616249972060024343, 10.25349858252450358456894296230