Properties

Label 2-538-1.1-c3-0-51
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $31.7430$
Root an. cond. $5.63409$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 10.0·3-s + 4·4-s + 8.61·5-s + 20.0·6-s − 13.5·7-s + 8·8-s + 73.0·9-s + 17.2·10-s + 28.7·11-s + 40.0·12-s + 57.0·13-s − 27.1·14-s + 86.1·15-s + 16·16-s − 79.9·17-s + 146.·18-s − 123.·19-s + 34.4·20-s − 135.·21-s + 57.5·22-s − 32.1·23-s + 80.0·24-s − 50.7·25-s + 114.·26-s + 460.·27-s − 54.3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.92·3-s + 0.5·4-s + 0.770·5-s + 1.36·6-s − 0.733·7-s + 0.353·8-s + 2.70·9-s + 0.544·10-s + 0.789·11-s + 0.962·12-s + 1.21·13-s − 0.518·14-s + 1.48·15-s + 0.250·16-s − 1.14·17-s + 1.91·18-s − 1.49·19-s + 0.385·20-s − 1.41·21-s + 0.558·22-s − 0.291·23-s + 0.680·24-s − 0.406·25-s + 0.860·26-s + 3.27·27-s − 0.366·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(31.7430\)
Root analytic conductor: \(5.63409\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.755431605\)
\(L(\frac12)\) \(\approx\) \(6.755431605\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
269 \( 1 - 269T \)
good3 \( 1 - 10.0T + 27T^{2} \)
5 \( 1 - 8.61T + 125T^{2} \)
7 \( 1 + 13.5T + 343T^{2} \)
11 \( 1 - 28.7T + 1.33e3T^{2} \)
13 \( 1 - 57.0T + 2.19e3T^{2} \)
17 \( 1 + 79.9T + 4.91e3T^{2} \)
19 \( 1 + 123.T + 6.85e3T^{2} \)
23 \( 1 + 32.1T + 1.21e4T^{2} \)
29 \( 1 + 267.T + 2.43e4T^{2} \)
31 \( 1 + 208.T + 2.97e4T^{2} \)
37 \( 1 - 150.T + 5.06e4T^{2} \)
41 \( 1 - 326.T + 6.89e4T^{2} \)
43 \( 1 - 111.T + 7.95e4T^{2} \)
47 \( 1 - 133.T + 1.03e5T^{2} \)
53 \( 1 - 356.T + 1.48e5T^{2} \)
59 \( 1 + 303.T + 2.05e5T^{2} \)
61 \( 1 - 567.T + 2.26e5T^{2} \)
67 \( 1 - 40.4T + 3.00e5T^{2} \)
71 \( 1 + 222.T + 3.57e5T^{2} \)
73 \( 1 + 816.T + 3.89e5T^{2} \)
79 \( 1 - 419.T + 4.93e5T^{2} \)
83 \( 1 + 238.T + 5.71e5T^{2} \)
89 \( 1 - 1.07e3T + 7.04e5T^{2} \)
97 \( 1 - 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25349858252450358456894296230, −9.134618760643616249972060024343, −8.996757049523995618693885163087, −7.74689152132039213379466816284, −6.70709839665970894271122033566, −5.99152921776377006773536980692, −4.12012795841667039327487157973, −3.74563845988830867774497259019, −2.44068385508487015405874461248, −1.72318425283666642663390960677, 1.72318425283666642663390960677, 2.44068385508487015405874461248, 3.74563845988830867774497259019, 4.12012795841667039327487157973, 5.99152921776377006773536980692, 6.70709839665970894271122033566, 7.74689152132039213379466816284, 8.996757049523995618693885163087, 9.134618760643616249972060024343, 10.25349858252450358456894296230

Graph of the $Z$-function along the critical line