L(s) = 1 | + 2·2-s − 6.41·3-s + 4·4-s + 6.01·5-s − 12.8·6-s + 26.2·7-s + 8·8-s + 14.1·9-s + 12.0·10-s + 69.8·11-s − 25.6·12-s − 28.9·13-s + 52.5·14-s − 38.6·15-s + 16·16-s − 15.4·17-s + 28.3·18-s − 84.7·19-s + 24.0·20-s − 168.·21-s + 139.·22-s + 35.7·23-s − 51.3·24-s − 88.7·25-s − 57.9·26-s + 82.2·27-s + 105.·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.23·3-s + 0.5·4-s + 0.538·5-s − 0.873·6-s + 1.41·7-s + 0.353·8-s + 0.525·9-s + 0.380·10-s + 1.91·11-s − 0.617·12-s − 0.618·13-s + 1.00·14-s − 0.664·15-s + 0.250·16-s − 0.221·17-s + 0.371·18-s − 1.02·19-s + 0.269·20-s − 1.75·21-s + 1.35·22-s + 0.324·23-s − 0.436·24-s − 0.710·25-s − 0.437·26-s + 0.585·27-s + 0.709·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(538s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.831574126 |
L(21) |
≈ |
2.831574126 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 269 | 1−269T |
good | 3 | 1+6.41T+27T2 |
| 5 | 1−6.01T+125T2 |
| 7 | 1−26.2T+343T2 |
| 11 | 1−69.8T+1.33e3T2 |
| 13 | 1+28.9T+2.19e3T2 |
| 17 | 1+15.4T+4.91e3T2 |
| 19 | 1+84.7T+6.85e3T2 |
| 23 | 1−35.7T+1.21e4T2 |
| 29 | 1+95.2T+2.43e4T2 |
| 31 | 1−189.T+2.97e4T2 |
| 37 | 1−76.9T+5.06e4T2 |
| 41 | 1−387.T+6.89e4T2 |
| 43 | 1−562.T+7.95e4T2 |
| 47 | 1+469.T+1.03e5T2 |
| 53 | 1−424.T+1.48e5T2 |
| 59 | 1+490.T+2.05e5T2 |
| 61 | 1−564.T+2.26e5T2 |
| 67 | 1−111.T+3.00e5T2 |
| 71 | 1+717.T+3.57e5T2 |
| 73 | 1−328.T+3.89e5T2 |
| 79 | 1−557.T+4.93e5T2 |
| 83 | 1+873.T+5.71e5T2 |
| 89 | 1−1.05e3T+7.04e5T2 |
| 97 | 1+1.30e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88144685885327027391919688022, −9.713784300066406088737294012044, −8.651883210101215581855232787263, −7.40139580584963469607197693867, −6.37343046911279419029154373859, −5.82332603079908902875583430299, −4.74989835915046747677367145062, −4.15335386323101858838104761138, −2.17992625302447889317828734785, −1.06770949401608027107714181934,
1.06770949401608027107714181934, 2.17992625302447889317828734785, 4.15335386323101858838104761138, 4.74989835915046747677367145062, 5.82332603079908902875583430299, 6.37343046911279419029154373859, 7.40139580584963469607197693867, 8.651883210101215581855232787263, 9.713784300066406088737294012044, 10.88144685885327027391919688022