Properties

Label 2-538-1.1-c5-0-3
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $86.2864$
Root an. cond. $9.28905$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 19.2·3-s + 16·4-s − 81.3·5-s − 76.8·6-s − 137.·7-s − 64·8-s + 126.·9-s + 325.·10-s − 458.·11-s + 307.·12-s − 1.04e3·13-s + 548.·14-s − 1.56e3·15-s + 256·16-s − 1.14e3·17-s − 505.·18-s + 1.26e3·19-s − 1.30e3·20-s − 2.63e3·21-s + 1.83e3·22-s + 2.58e3·23-s − 1.22e3·24-s + 3.49e3·25-s + 4.18e3·26-s − 2.24e3·27-s − 2.19e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.23·3-s + 0.5·4-s − 1.45·5-s − 0.871·6-s − 1.05·7-s − 0.353·8-s + 0.519·9-s + 1.02·10-s − 1.14·11-s + 0.616·12-s − 1.71·13-s + 0.747·14-s − 1.79·15-s + 0.250·16-s − 0.963·17-s − 0.367·18-s + 0.801·19-s − 0.727·20-s − 1.30·21-s + 0.807·22-s + 1.01·23-s − 0.435·24-s + 1.11·25-s + 1.21·26-s − 0.591·27-s − 0.528·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(86.2864\)
Root analytic conductor: \(9.28905\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3284051114\)
\(L(\frac12)\) \(\approx\) \(0.3284051114\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
269 \( 1 - 7.23e4T \)
good3 \( 1 - 19.2T + 243T^{2} \)
5 \( 1 + 81.3T + 3.12e3T^{2} \)
7 \( 1 + 137.T + 1.68e4T^{2} \)
11 \( 1 + 458.T + 1.61e5T^{2} \)
13 \( 1 + 1.04e3T + 3.71e5T^{2} \)
17 \( 1 + 1.14e3T + 1.41e6T^{2} \)
19 \( 1 - 1.26e3T + 2.47e6T^{2} \)
23 \( 1 - 2.58e3T + 6.43e6T^{2} \)
29 \( 1 + 5.99e3T + 2.05e7T^{2} \)
31 \( 1 + 1.03e4T + 2.86e7T^{2} \)
37 \( 1 - 7.87e3T + 6.93e7T^{2} \)
41 \( 1 - 1.18e4T + 1.15e8T^{2} \)
43 \( 1 - 1.77e3T + 1.47e8T^{2} \)
47 \( 1 + 1.99e3T + 2.29e8T^{2} \)
53 \( 1 + 2.44e3T + 4.18e8T^{2} \)
59 \( 1 - 3.67e4T + 7.14e8T^{2} \)
61 \( 1 + 5.77e3T + 8.44e8T^{2} \)
67 \( 1 - 3.77e4T + 1.35e9T^{2} \)
71 \( 1 - 6.55e4T + 1.80e9T^{2} \)
73 \( 1 + 4.05e4T + 2.07e9T^{2} \)
79 \( 1 + 5.72e4T + 3.07e9T^{2} \)
83 \( 1 + 1.00e5T + 3.93e9T^{2} \)
89 \( 1 - 1.00e5T + 5.58e9T^{2} \)
97 \( 1 - 1.80e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.599191595366403425585757367439, −9.253342247224145437157107225909, −8.184289053608584052520068057962, −7.44077416596396879740088370490, −7.13355113049131521861183736048, −5.33636859563493964248740655653, −3.94967358938449034808501687080, −3.01585912728635301486886888670, −2.35549626940297673692731645523, −0.27214252504719193454276988243, 0.27214252504719193454276988243, 2.35549626940297673692731645523, 3.01585912728635301486886888670, 3.94967358938449034808501687080, 5.33636859563493964248740655653, 7.13355113049131521861183736048, 7.44077416596396879740088370490, 8.184289053608584052520068057962, 9.253342247224145437157107225909, 9.599191595366403425585757367439

Graph of the $Z$-function along the critical line