L(s) = 1 | − 4·2-s + 26.7·3-s + 16·4-s + 50.5·5-s − 106.·6-s + 248.·7-s − 64·8-s + 472.·9-s − 202.·10-s + 32.9·11-s + 427.·12-s − 501.·13-s − 992.·14-s + 1.35e3·15-s + 256·16-s + 658.·17-s − 1.89e3·18-s − 1.91e3·19-s + 808.·20-s + 6.63e3·21-s − 131.·22-s + 3.25e3·23-s − 1.71e3·24-s − 568.·25-s + 2.00e3·26-s + 6.13e3·27-s + 3.96e3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.71·3-s + 0.5·4-s + 0.904·5-s − 1.21·6-s + 1.91·7-s − 0.353·8-s + 1.94·9-s − 0.639·10-s + 0.0820·11-s + 0.857·12-s − 0.823·13-s − 1.35·14-s + 1.55·15-s + 0.250·16-s + 0.552·17-s − 1.37·18-s − 1.21·19-s + 0.452·20-s + 3.28·21-s − 0.0580·22-s + 1.28·23-s − 0.606·24-s − 0.182·25-s + 0.582·26-s + 1.62·27-s + 0.956·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(538s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.783885613 |
L(21) |
≈ |
4.783885613 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4T |
| 269 | 1−7.23e4T |
good | 3 | 1−26.7T+243T2 |
| 5 | 1−50.5T+3.12e3T2 |
| 7 | 1−248.T+1.68e4T2 |
| 11 | 1−32.9T+1.61e5T2 |
| 13 | 1+501.T+3.71e5T2 |
| 17 | 1−658.T+1.41e6T2 |
| 19 | 1+1.91e3T+2.47e6T2 |
| 23 | 1−3.25e3T+6.43e6T2 |
| 29 | 1+1.07e3T+2.05e7T2 |
| 31 | 1−2.74e3T+2.86e7T2 |
| 37 | 1−1.57e4T+6.93e7T2 |
| 41 | 1+1.82e4T+1.15e8T2 |
| 43 | 1−804.T+1.47e8T2 |
| 47 | 1+2.95e3T+2.29e8T2 |
| 53 | 1−813.T+4.18e8T2 |
| 59 | 1−1.16e4T+7.14e8T2 |
| 61 | 1+2.22e4T+8.44e8T2 |
| 67 | 1−8.72e3T+1.35e9T2 |
| 71 | 1−4.29e4T+1.80e9T2 |
| 73 | 1−2.36e4T+2.07e9T2 |
| 79 | 1−4.76e4T+3.07e9T2 |
| 83 | 1+1.13e5T+3.93e9T2 |
| 89 | 1+4.28e3T+5.58e9T2 |
| 97 | 1+1.42e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.765898587512248261852968454545, −9.066293175822729396164605924426, −8.235867854888496458651746233009, −7.83122685348487346051104550558, −6.81073433935763179591345874819, −5.27931742291873261486697931665, −4.25073725091371872303906100888, −2.71946414533525483721781732457, −2.01669771161414398101380547359, −1.26963555233854712671910749804,
1.26963555233854712671910749804, 2.01669771161414398101380547359, 2.71946414533525483721781732457, 4.25073725091371872303906100888, 5.27931742291873261486697931665, 6.81073433935763179591345874819, 7.83122685348487346051104550558, 8.235867854888496458651746233009, 9.066293175822729396164605924426, 9.765898587512248261852968454545