L(s) = 1 | − 4·2-s + 9.07·3-s + 16·4-s + 62.0·5-s − 36.2·6-s − 113.·7-s − 64·8-s − 160.·9-s − 248.·10-s + 263.·11-s + 145.·12-s − 273.·13-s + 453.·14-s + 562.·15-s + 256·16-s − 857.·17-s + 642.·18-s + 1.13e3·19-s + 992.·20-s − 1.02e3·21-s − 1.05e3·22-s + 2.42e3·23-s − 580.·24-s + 721.·25-s + 1.09e3·26-s − 3.66e3·27-s − 1.81e3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.581·3-s + 0.5·4-s + 1.10·5-s − 0.411·6-s − 0.874·7-s − 0.353·8-s − 0.661·9-s − 0.784·10-s + 0.656·11-s + 0.290·12-s − 0.448·13-s + 0.618·14-s + 0.645·15-s + 0.250·16-s − 0.719·17-s + 0.467·18-s + 0.720·19-s + 0.554·20-s − 0.509·21-s − 0.463·22-s + 0.956·23-s − 0.205·24-s + 0.230·25-s + 0.317·26-s − 0.966·27-s − 0.437·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(538s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4T |
| 269 | 1+7.23e4T |
good | 3 | 1−9.07T+243T2 |
| 5 | 1−62.0T+3.12e3T2 |
| 7 | 1+113.T+1.68e4T2 |
| 11 | 1−263.T+1.61e5T2 |
| 13 | 1+273.T+3.71e5T2 |
| 17 | 1+857.T+1.41e6T2 |
| 19 | 1−1.13e3T+2.47e6T2 |
| 23 | 1−2.42e3T+6.43e6T2 |
| 29 | 1−7.69e3T+2.05e7T2 |
| 31 | 1+4.92e3T+2.86e7T2 |
| 37 | 1−757.T+6.93e7T2 |
| 41 | 1+199.T+1.15e8T2 |
| 43 | 1+1.12e4T+1.47e8T2 |
| 47 | 1+1.82e4T+2.29e8T2 |
| 53 | 1+1.96e4T+4.18e8T2 |
| 59 | 1−1.45e4T+7.14e8T2 |
| 61 | 1+5.38e4T+8.44e8T2 |
| 67 | 1+3.72e4T+1.35e9T2 |
| 71 | 1−4.75e4T+1.80e9T2 |
| 73 | 1−8.82e3T+2.07e9T2 |
| 79 | 1−2.95e4T+3.07e9T2 |
| 83 | 1+559.T+3.93e9T2 |
| 89 | 1−1.00e5T+5.58e9T2 |
| 97 | 1+1.19e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.385443298159200445221790767497, −9.053002483220135473973233796849, −7.993385624632637651359826785639, −6.77780598692035858434833035937, −6.21809440976821910443587537024, −5.05268355107760886811231791610, −3.33770336010769079915134167175, −2.57176511059207811057052481746, −1.45450421511945341471440460090, 0,
1.45450421511945341471440460090, 2.57176511059207811057052481746, 3.33770336010769079915134167175, 5.05268355107760886811231791610, 6.21809440976821910443587537024, 6.77780598692035858434833035937, 7.993385624632637651359826785639, 9.053002483220135473973233796849, 9.385443298159200445221790767497