Properties

Label 2-538-1.1-c5-0-87
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $86.2864$
Root an. cond. $9.28905$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9.07·3-s + 16·4-s + 62.0·5-s − 36.2·6-s − 113.·7-s − 64·8-s − 160.·9-s − 248.·10-s + 263.·11-s + 145.·12-s − 273.·13-s + 453.·14-s + 562.·15-s + 256·16-s − 857.·17-s + 642.·18-s + 1.13e3·19-s + 992.·20-s − 1.02e3·21-s − 1.05e3·22-s + 2.42e3·23-s − 580.·24-s + 721.·25-s + 1.09e3·26-s − 3.66e3·27-s − 1.81e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.581·3-s + 0.5·4-s + 1.10·5-s − 0.411·6-s − 0.874·7-s − 0.353·8-s − 0.661·9-s − 0.784·10-s + 0.656·11-s + 0.290·12-s − 0.448·13-s + 0.618·14-s + 0.645·15-s + 0.250·16-s − 0.719·17-s + 0.467·18-s + 0.720·19-s + 0.554·20-s − 0.509·21-s − 0.463·22-s + 0.956·23-s − 0.205·24-s + 0.230·25-s + 0.317·26-s − 0.966·27-s − 0.437·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(86.2864\)
Root analytic conductor: \(9.28905\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
269 \( 1 + 7.23e4T \)
good3 \( 1 - 9.07T + 243T^{2} \)
5 \( 1 - 62.0T + 3.12e3T^{2} \)
7 \( 1 + 113.T + 1.68e4T^{2} \)
11 \( 1 - 263.T + 1.61e5T^{2} \)
13 \( 1 + 273.T + 3.71e5T^{2} \)
17 \( 1 + 857.T + 1.41e6T^{2} \)
19 \( 1 - 1.13e3T + 2.47e6T^{2} \)
23 \( 1 - 2.42e3T + 6.43e6T^{2} \)
29 \( 1 - 7.69e3T + 2.05e7T^{2} \)
31 \( 1 + 4.92e3T + 2.86e7T^{2} \)
37 \( 1 - 757.T + 6.93e7T^{2} \)
41 \( 1 + 199.T + 1.15e8T^{2} \)
43 \( 1 + 1.12e4T + 1.47e8T^{2} \)
47 \( 1 + 1.82e4T + 2.29e8T^{2} \)
53 \( 1 + 1.96e4T + 4.18e8T^{2} \)
59 \( 1 - 1.45e4T + 7.14e8T^{2} \)
61 \( 1 + 5.38e4T + 8.44e8T^{2} \)
67 \( 1 + 3.72e4T + 1.35e9T^{2} \)
71 \( 1 - 4.75e4T + 1.80e9T^{2} \)
73 \( 1 - 8.82e3T + 2.07e9T^{2} \)
79 \( 1 - 2.95e4T + 3.07e9T^{2} \)
83 \( 1 + 559.T + 3.93e9T^{2} \)
89 \( 1 - 1.00e5T + 5.58e9T^{2} \)
97 \( 1 + 1.19e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385443298159200445221790767497, −9.053002483220135473973233796849, −7.993385624632637651359826785639, −6.77780598692035858434833035937, −6.21809440976821910443587537024, −5.05268355107760886811231791610, −3.33770336010769079915134167175, −2.57176511059207811057052481746, −1.45450421511945341471440460090, 0, 1.45450421511945341471440460090, 2.57176511059207811057052481746, 3.33770336010769079915134167175, 5.05268355107760886811231791610, 6.21809440976821910443587537024, 6.77780598692035858434833035937, 7.993385624632637651359826785639, 9.053002483220135473973233796849, 9.385443298159200445221790767497

Graph of the $Z$-function along the critical line