Properties

Label 2-538-1.1-c5-0-25
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $86.2864$
Root an. cond. $9.28905$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 18.0·3-s + 16·4-s − 73.3·5-s + 72.0·6-s − 227.·7-s + 64·8-s + 81.5·9-s − 293.·10-s − 371.·11-s + 288.·12-s + 804.·13-s − 908.·14-s − 1.32e3·15-s + 256·16-s + 1.52e3·17-s + 326.·18-s + 898.·19-s − 1.17e3·20-s − 4.09e3·21-s − 1.48e3·22-s + 3.09e3·23-s + 1.15e3·24-s + 2.25e3·25-s + 3.21e3·26-s − 2.90e3·27-s − 3.63e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 0.5·4-s − 1.31·5-s + 0.817·6-s − 1.75·7-s + 0.353·8-s + 0.335·9-s − 0.927·10-s − 0.925·11-s + 0.577·12-s + 1.32·13-s − 1.23·14-s − 1.51·15-s + 0.250·16-s + 1.27·17-s + 0.237·18-s + 0.571·19-s − 0.655·20-s − 2.02·21-s − 0.654·22-s + 1.21·23-s + 0.408·24-s + 0.721·25-s + 0.933·26-s − 0.767·27-s − 0.875·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(86.2864\)
Root analytic conductor: \(9.28905\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.139647004\)
\(L(\frac12)\) \(\approx\) \(3.139647004\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
269 \( 1 + 7.23e4T \)
good3 \( 1 - 18.0T + 243T^{2} \)
5 \( 1 + 73.3T + 3.12e3T^{2} \)
7 \( 1 + 227.T + 1.68e4T^{2} \)
11 \( 1 + 371.T + 1.61e5T^{2} \)
13 \( 1 - 804.T + 3.71e5T^{2} \)
17 \( 1 - 1.52e3T + 1.41e6T^{2} \)
19 \( 1 - 898.T + 2.47e6T^{2} \)
23 \( 1 - 3.09e3T + 6.43e6T^{2} \)
29 \( 1 + 3.00e3T + 2.05e7T^{2} \)
31 \( 1 - 3.10e3T + 2.86e7T^{2} \)
37 \( 1 - 2.46e3T + 6.93e7T^{2} \)
41 \( 1 - 9.85e3T + 1.15e8T^{2} \)
43 \( 1 + 1.43e4T + 1.47e8T^{2} \)
47 \( 1 + 1.25e3T + 2.29e8T^{2} \)
53 \( 1 - 1.72e4T + 4.18e8T^{2} \)
59 \( 1 + 3.73e4T + 7.14e8T^{2} \)
61 \( 1 - 4.37e4T + 8.44e8T^{2} \)
67 \( 1 - 4.17e4T + 1.35e9T^{2} \)
71 \( 1 - 5.58e4T + 1.80e9T^{2} \)
73 \( 1 - 2.67e4T + 2.07e9T^{2} \)
79 \( 1 + 2.32e4T + 3.07e9T^{2} \)
83 \( 1 - 8.09e4T + 3.93e9T^{2} \)
89 \( 1 - 8.73e4T + 5.58e9T^{2} \)
97 \( 1 - 1.31e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.974249641259135399347826238816, −9.066612146691885752525503409302, −8.081895942980189755874320219855, −7.48434182113436005304064577504, −6.43868870350875018427569883411, −5.33523006341108514307496220094, −3.70731872162268743195706676056, −3.46389757317030150871037441468, −2.69547193146561094213993506828, −0.72999939015472210176344305559, 0.72999939015472210176344305559, 2.69547193146561094213993506828, 3.46389757317030150871037441468, 3.70731872162268743195706676056, 5.33523006341108514307496220094, 6.43868870350875018427569883411, 7.48434182113436005304064577504, 8.081895942980189755874320219855, 9.066612146691885752525503409302, 9.974249641259135399347826238816

Graph of the $Z$-function along the critical line