Properties

Label 2-538-1.1-c7-0-134
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 40.5·3-s + 64·4-s − 147.·5-s + 324.·6-s − 419.·7-s + 512·8-s − 541.·9-s − 1.17e3·10-s + 240.·11-s + 2.59e3·12-s + 4.97e3·13-s − 3.35e3·14-s − 5.97e3·15-s + 4.09e3·16-s + 3.86e4·17-s − 4.32e3·18-s − 2.03e4·19-s − 9.42e3·20-s − 1.70e4·21-s + 1.92e3·22-s − 9.31e4·23-s + 2.07e4·24-s − 5.64e4·25-s + 3.98e4·26-s − 1.10e5·27-s − 2.68e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.867·3-s + 0.5·4-s − 0.527·5-s + 0.613·6-s − 0.462·7-s + 0.353·8-s − 0.247·9-s − 0.372·10-s + 0.0543·11-s + 0.433·12-s + 0.628·13-s − 0.327·14-s − 0.457·15-s + 0.250·16-s + 1.91·17-s − 0.174·18-s − 0.680·19-s − 0.263·20-s − 0.401·21-s + 0.0384·22-s − 1.59·23-s + 0.306·24-s − 0.722·25-s + 0.444·26-s − 1.08·27-s − 0.231·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
269 \( 1 + 1.94e7T \)
good3 \( 1 - 40.5T + 2.18e3T^{2} \)
5 \( 1 + 147.T + 7.81e4T^{2} \)
7 \( 1 + 419.T + 8.23e5T^{2} \)
11 \( 1 - 240.T + 1.94e7T^{2} \)
13 \( 1 - 4.97e3T + 6.27e7T^{2} \)
17 \( 1 - 3.86e4T + 4.10e8T^{2} \)
19 \( 1 + 2.03e4T + 8.93e8T^{2} \)
23 \( 1 + 9.31e4T + 3.40e9T^{2} \)
29 \( 1 - 5.58e4T + 1.72e10T^{2} \)
31 \( 1 - 1.76e4T + 2.75e10T^{2} \)
37 \( 1 + 5.68e4T + 9.49e10T^{2} \)
41 \( 1 - 7.77e5T + 1.94e11T^{2} \)
43 \( 1 + 5.67e5T + 2.71e11T^{2} \)
47 \( 1 - 9.50e5T + 5.06e11T^{2} \)
53 \( 1 + 6.47e5T + 1.17e12T^{2} \)
59 \( 1 + 2.62e6T + 2.48e12T^{2} \)
61 \( 1 + 3.11e6T + 3.14e12T^{2} \)
67 \( 1 + 3.16e6T + 6.06e12T^{2} \)
71 \( 1 - 3.64e6T + 9.09e12T^{2} \)
73 \( 1 - 3.73e6T + 1.10e13T^{2} \)
79 \( 1 + 4.63e6T + 1.92e13T^{2} \)
83 \( 1 - 7.23e6T + 2.71e13T^{2} \)
89 \( 1 + 1.29e7T + 4.42e13T^{2} \)
97 \( 1 + 6.86e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.225549655296827597592928801748, −8.018085208648704216650687928610, −7.77409516589317450073821041055, −6.31144949911515690708936260129, −5.65761010172984738056306951898, −4.19799477328028941126789698143, −3.52004418387981647549755471913, −2.73777898215251919490825151672, −1.51074292337626808425169444711, 0, 1.51074292337626808425169444711, 2.73777898215251919490825151672, 3.52004418387981647549755471913, 4.19799477328028941126789698143, 5.65761010172984738056306951898, 6.31144949911515690708936260129, 7.77409516589317450073821041055, 8.018085208648704216650687928610, 9.225549655296827597592928801748

Graph of the $Z$-function along the critical line