Properties

Label 2-538-1.1-c7-0-148
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 70.5·3-s + 64·4-s − 243.·5-s + 564.·6-s + 620.·7-s + 512·8-s + 2.79e3·9-s − 1.95e3·10-s − 5.12e3·11-s + 4.51e3·12-s − 8.49e3·13-s + 4.96e3·14-s − 1.72e4·15-s + 4.09e3·16-s − 3.59e4·17-s + 2.23e4·18-s + 4.69e4·19-s − 1.56e4·20-s + 4.37e4·21-s − 4.10e4·22-s + 5.24e4·23-s + 3.61e4·24-s − 1.86e4·25-s − 6.79e4·26-s + 4.26e4·27-s + 3.97e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.50·3-s + 0.5·4-s − 0.872·5-s + 1.06·6-s + 0.683·7-s + 0.353·8-s + 1.27·9-s − 0.616·10-s − 1.16·11-s + 0.754·12-s − 1.07·13-s + 0.483·14-s − 1.31·15-s + 0.250·16-s − 1.77·17-s + 0.902·18-s + 1.57·19-s − 0.436·20-s + 1.03·21-s − 0.821·22-s + 0.898·23-s + 0.533·24-s − 0.239·25-s − 0.758·26-s + 0.417·27-s + 0.341·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
269 \( 1 + 1.94e7T \)
good3 \( 1 - 70.5T + 2.18e3T^{2} \)
5 \( 1 + 243.T + 7.81e4T^{2} \)
7 \( 1 - 620.T + 8.23e5T^{2} \)
11 \( 1 + 5.12e3T + 1.94e7T^{2} \)
13 \( 1 + 8.49e3T + 6.27e7T^{2} \)
17 \( 1 + 3.59e4T + 4.10e8T^{2} \)
19 \( 1 - 4.69e4T + 8.93e8T^{2} \)
23 \( 1 - 5.24e4T + 3.40e9T^{2} \)
29 \( 1 - 1.60e4T + 1.72e10T^{2} \)
31 \( 1 - 2.29e5T + 2.75e10T^{2} \)
37 \( 1 + 5.17e5T + 9.49e10T^{2} \)
41 \( 1 - 2.76e5T + 1.94e11T^{2} \)
43 \( 1 + 3.47e5T + 2.71e11T^{2} \)
47 \( 1 + 1.35e6T + 5.06e11T^{2} \)
53 \( 1 + 5.36e5T + 1.17e12T^{2} \)
59 \( 1 + 1.09e6T + 2.48e12T^{2} \)
61 \( 1 + 3.00e6T + 3.14e12T^{2} \)
67 \( 1 + 6.42e4T + 6.06e12T^{2} \)
71 \( 1 - 4.09e6T + 9.09e12T^{2} \)
73 \( 1 + 2.03e6T + 1.10e13T^{2} \)
79 \( 1 + 2.18e6T + 1.92e13T^{2} \)
83 \( 1 - 1.77e6T + 2.71e13T^{2} \)
89 \( 1 + 3.68e6T + 4.42e13T^{2} \)
97 \( 1 - 4.07e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073984827298302609742066571022, −8.075910888262557975087845625157, −7.68948848154390743593241102706, −6.82053553856825229717268021827, −5.04042756085922325323650543100, −4.56298799677468563445307215745, −3.30516786757962239324987648422, −2.70891435432081257857649709357, −1.72380756834874292039824640027, 0, 1.72380756834874292039824640027, 2.70891435432081257857649709357, 3.30516786757962239324987648422, 4.56298799677468563445307215745, 5.04042756085922325323650543100, 6.82053553856825229717268021827, 7.68948848154390743593241102706, 8.075910888262557975087845625157, 9.073984827298302609742066571022

Graph of the $Z$-function along the critical line