L(s) = 1 | − 8·2-s + 55.4·3-s + 64·4-s + 70.1·5-s − 443.·6-s + 944.·7-s − 512·8-s + 882.·9-s − 561.·10-s − 4.31e3·11-s + 3.54e3·12-s − 1.84e3·13-s − 7.55e3·14-s + 3.88e3·15-s + 4.09e3·16-s + 2.73e4·17-s − 7.05e3·18-s − 3.19e4·19-s + 4.49e3·20-s + 5.23e4·21-s + 3.44e4·22-s − 1.87e4·23-s − 2.83e4·24-s − 7.31e4·25-s + 1.47e4·26-s − 7.22e4·27-s + 6.04e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.18·3-s + 0.5·4-s + 0.251·5-s − 0.837·6-s + 1.04·7-s − 0.353·8-s + 0.403·9-s − 0.177·10-s − 0.976·11-s + 0.592·12-s − 0.232·13-s − 0.736·14-s + 0.297·15-s + 0.250·16-s + 1.34·17-s − 0.285·18-s − 1.06·19-s + 0.125·20-s + 1.23·21-s + 0.690·22-s − 0.321·23-s − 0.418·24-s − 0.936·25-s + 0.164·26-s − 0.706·27-s + 0.520·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(538s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
2.853174188 |
L(21) |
≈ |
2.853174188 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 269 | 1+1.94e7T |
good | 3 | 1−55.4T+2.18e3T2 |
| 5 | 1−70.1T+7.81e4T2 |
| 7 | 1−944.T+8.23e5T2 |
| 11 | 1+4.31e3T+1.94e7T2 |
| 13 | 1+1.84e3T+6.27e7T2 |
| 17 | 1−2.73e4T+4.10e8T2 |
| 19 | 1+3.19e4T+8.93e8T2 |
| 23 | 1+1.87e4T+3.40e9T2 |
| 29 | 1−8.50e4T+1.72e10T2 |
| 31 | 1−8.44e4T+2.75e10T2 |
| 37 | 1−6.79e4T+9.49e10T2 |
| 41 | 1−4.44e5T+1.94e11T2 |
| 43 | 1−9.72e5T+2.71e11T2 |
| 47 | 1+1.01e6T+5.06e11T2 |
| 53 | 1−1.56e6T+1.17e12T2 |
| 59 | 1−1.98e5T+2.48e12T2 |
| 61 | 1−9.86e5T+3.14e12T2 |
| 67 | 1−1.95e6T+6.06e12T2 |
| 71 | 1−8.78e5T+9.09e12T2 |
| 73 | 1−3.72e6T+1.10e13T2 |
| 79 | 1−4.48e6T+1.92e13T2 |
| 83 | 1−8.26e6T+2.71e13T2 |
| 89 | 1−1.72e6T+4.42e13T2 |
| 97 | 1−2.55e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.616869829508804046323109149613, −8.641226063150122774696958290359, −7.924683956290719094740365429675, −7.64884229222007036185068225347, −6.12750281022285702832856943492, −5.07884344599562627498072180903, −3.79076573830019125709081936015, −2.55715062105100101604525192906, −2.02575210920403935476078143955, −0.75866401028503211450234978664,
0.75866401028503211450234978664, 2.02575210920403935476078143955, 2.55715062105100101604525192906, 3.79076573830019125709081936015, 5.07884344599562627498072180903, 6.12750281022285702832856943492, 7.64884229222007036185068225347, 7.924683956290719094740365429675, 8.641226063150122774696958290359, 9.616869829508804046323109149613