Properties

Label 2-538-1.1-c7-0-56
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 55.4·3-s + 64·4-s + 70.1·5-s − 443.·6-s + 944.·7-s − 512·8-s + 882.·9-s − 561.·10-s − 4.31e3·11-s + 3.54e3·12-s − 1.84e3·13-s − 7.55e3·14-s + 3.88e3·15-s + 4.09e3·16-s + 2.73e4·17-s − 7.05e3·18-s − 3.19e4·19-s + 4.49e3·20-s + 5.23e4·21-s + 3.44e4·22-s − 1.87e4·23-s − 2.83e4·24-s − 7.31e4·25-s + 1.47e4·26-s − 7.22e4·27-s + 6.04e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.18·3-s + 0.5·4-s + 0.251·5-s − 0.837·6-s + 1.04·7-s − 0.353·8-s + 0.403·9-s − 0.177·10-s − 0.976·11-s + 0.592·12-s − 0.232·13-s − 0.736·14-s + 0.297·15-s + 0.250·16-s + 1.34·17-s − 0.285·18-s − 1.06·19-s + 0.125·20-s + 1.23·21-s + 0.690·22-s − 0.321·23-s − 0.418·24-s − 0.936·25-s + 0.164·26-s − 0.706·27-s + 0.520·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.853174188\)
\(L(\frac12)\) \(\approx\) \(2.853174188\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
269 \( 1 + 1.94e7T \)
good3 \( 1 - 55.4T + 2.18e3T^{2} \)
5 \( 1 - 70.1T + 7.81e4T^{2} \)
7 \( 1 - 944.T + 8.23e5T^{2} \)
11 \( 1 + 4.31e3T + 1.94e7T^{2} \)
13 \( 1 + 1.84e3T + 6.27e7T^{2} \)
17 \( 1 - 2.73e4T + 4.10e8T^{2} \)
19 \( 1 + 3.19e4T + 8.93e8T^{2} \)
23 \( 1 + 1.87e4T + 3.40e9T^{2} \)
29 \( 1 - 8.50e4T + 1.72e10T^{2} \)
31 \( 1 - 8.44e4T + 2.75e10T^{2} \)
37 \( 1 - 6.79e4T + 9.49e10T^{2} \)
41 \( 1 - 4.44e5T + 1.94e11T^{2} \)
43 \( 1 - 9.72e5T + 2.71e11T^{2} \)
47 \( 1 + 1.01e6T + 5.06e11T^{2} \)
53 \( 1 - 1.56e6T + 1.17e12T^{2} \)
59 \( 1 - 1.98e5T + 2.48e12T^{2} \)
61 \( 1 - 9.86e5T + 3.14e12T^{2} \)
67 \( 1 - 1.95e6T + 6.06e12T^{2} \)
71 \( 1 - 8.78e5T + 9.09e12T^{2} \)
73 \( 1 - 3.72e6T + 1.10e13T^{2} \)
79 \( 1 - 4.48e6T + 1.92e13T^{2} \)
83 \( 1 - 8.26e6T + 2.71e13T^{2} \)
89 \( 1 - 1.72e6T + 4.42e13T^{2} \)
97 \( 1 - 2.55e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.616869829508804046323109149613, −8.641226063150122774696958290359, −7.924683956290719094740365429675, −7.64884229222007036185068225347, −6.12750281022285702832856943492, −5.07884344599562627498072180903, −3.79076573830019125709081936015, −2.55715062105100101604525192906, −2.02575210920403935476078143955, −0.75866401028503211450234978664, 0.75866401028503211450234978664, 2.02575210920403935476078143955, 2.55715062105100101604525192906, 3.79076573830019125709081936015, 5.07884344599562627498072180903, 6.12750281022285702832856943492, 7.64884229222007036185068225347, 7.924683956290719094740365429675, 8.641226063150122774696958290359, 9.616869829508804046323109149613

Graph of the $Z$-function along the critical line