Properties

Label 2-538-1.1-c7-0-107
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 25.5·3-s + 64·4-s + 439.·5-s + 204.·6-s − 363.·7-s − 512·8-s − 1.53e3·9-s − 3.51e3·10-s + 8.20e3·11-s − 1.63e3·12-s − 7.47e3·13-s + 2.91e3·14-s − 1.12e4·15-s + 4.09e3·16-s − 3.15e4·17-s + 1.22e4·18-s + 4.99e4·19-s + 2.81e4·20-s + 9.29e3·21-s − 6.56e4·22-s + 5.76e3·23-s + 1.30e4·24-s + 1.15e5·25-s + 5.98e4·26-s + 9.50e4·27-s − 2.32e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.545·3-s + 0.5·4-s + 1.57·5-s + 0.385·6-s − 0.401·7-s − 0.353·8-s − 0.702·9-s − 1.11·10-s + 1.85·11-s − 0.272·12-s − 0.943·13-s + 0.283·14-s − 0.859·15-s + 0.250·16-s − 1.55·17-s + 0.496·18-s + 1.67·19-s + 0.787·20-s + 0.218·21-s − 1.31·22-s + 0.0988·23-s + 0.192·24-s + 1.47·25-s + 0.667·26-s + 0.929·27-s − 0.200·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
269 \( 1 - 1.94e7T \)
good3 \( 1 + 25.5T + 2.18e3T^{2} \)
5 \( 1 - 439.T + 7.81e4T^{2} \)
7 \( 1 + 363.T + 8.23e5T^{2} \)
11 \( 1 - 8.20e3T + 1.94e7T^{2} \)
13 \( 1 + 7.47e3T + 6.27e7T^{2} \)
17 \( 1 + 3.15e4T + 4.10e8T^{2} \)
19 \( 1 - 4.99e4T + 8.93e8T^{2} \)
23 \( 1 - 5.76e3T + 3.40e9T^{2} \)
29 \( 1 + 1.47e5T + 1.72e10T^{2} \)
31 \( 1 - 1.40e5T + 2.75e10T^{2} \)
37 \( 1 + 4.65e5T + 9.49e10T^{2} \)
41 \( 1 - 6.98e4T + 1.94e11T^{2} \)
43 \( 1 + 2.57e5T + 2.71e11T^{2} \)
47 \( 1 - 8.08e5T + 5.06e11T^{2} \)
53 \( 1 + 5.98e5T + 1.17e12T^{2} \)
59 \( 1 + 1.25e6T + 2.48e12T^{2} \)
61 \( 1 + 1.61e6T + 3.14e12T^{2} \)
67 \( 1 + 2.52e6T + 6.06e12T^{2} \)
71 \( 1 + 1.78e6T + 9.09e12T^{2} \)
73 \( 1 - 5.45e6T + 1.10e13T^{2} \)
79 \( 1 + 4.14e6T + 1.92e13T^{2} \)
83 \( 1 - 1.41e6T + 2.71e13T^{2} \)
89 \( 1 + 1.02e6T + 4.42e13T^{2} \)
97 \( 1 - 7.08e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.305891543163204427661547000833, −8.826798255620650827029113652472, −7.19246174634155869852945435771, −6.47066773252987709434951656704, −5.85621478342463913805268661568, −4.84172158971979751993903161622, −3.20187107066443377426852700110, −2.09351942524124146508776283799, −1.21493351945459829788566730778, 0, 1.21493351945459829788566730778, 2.09351942524124146508776283799, 3.20187107066443377426852700110, 4.84172158971979751993903161622, 5.85621478342463913805268661568, 6.47066773252987709434951656704, 7.19246174634155869852945435771, 8.826798255620650827029113652472, 9.305891543163204427661547000833

Graph of the $Z$-function along the critical line