L(s) = 1 | − 8·2-s + 64.7·3-s + 64·4-s − 436.·5-s − 517.·6-s − 168.·7-s − 512·8-s + 2.00e3·9-s + 3.48e3·10-s − 5.90e3·11-s + 4.14e3·12-s + 4.98e3·13-s + 1.35e3·14-s − 2.82e4·15-s + 4.09e3·16-s + 1.38e4·17-s − 1.60e4·18-s + 3.54e4·19-s − 2.79e4·20-s − 1.09e4·21-s + 4.72e4·22-s + 794.·23-s − 3.31e4·24-s + 1.12e5·25-s − 3.98e4·26-s − 1.20e4·27-s − 1.08e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.38·3-s + 0.5·4-s − 1.56·5-s − 0.978·6-s − 0.186·7-s − 0.353·8-s + 0.915·9-s + 1.10·10-s − 1.33·11-s + 0.691·12-s + 0.628·13-s + 0.131·14-s − 2.15·15-s + 0.250·16-s + 0.685·17-s − 0.647·18-s + 1.18·19-s − 0.780·20-s − 0.257·21-s + 0.946·22-s + 0.0136·23-s − 0.489·24-s + 1.43·25-s − 0.444·26-s − 0.117·27-s − 0.0930·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(538s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 269 | 1−1.94e7T |
good | 3 | 1−64.7T+2.18e3T2 |
| 5 | 1+436.T+7.81e4T2 |
| 7 | 1+168.T+8.23e5T2 |
| 11 | 1+5.90e3T+1.94e7T2 |
| 13 | 1−4.98e3T+6.27e7T2 |
| 17 | 1−1.38e4T+4.10e8T2 |
| 19 | 1−3.54e4T+8.93e8T2 |
| 23 | 1−794.T+3.40e9T2 |
| 29 | 1+1.34e5T+1.72e10T2 |
| 31 | 1−2.83e5T+2.75e10T2 |
| 37 | 1+2.90e5T+9.49e10T2 |
| 41 | 1−2.96e5T+1.94e11T2 |
| 43 | 1−5.52e5T+2.71e11T2 |
| 47 | 1−1.24e6T+5.06e11T2 |
| 53 | 1−3.51e4T+1.17e12T2 |
| 59 | 1+7.19e5T+2.48e12T2 |
| 61 | 1−4.50e5T+3.14e12T2 |
| 67 | 1−2.63e6T+6.06e12T2 |
| 71 | 1+3.89e6T+9.09e12T2 |
| 73 | 1+1.66e6T+1.10e13T2 |
| 79 | 1+1.95e6T+1.92e13T2 |
| 83 | 1+5.27e6T+2.71e13T2 |
| 89 | 1+6.84e6T+4.42e13T2 |
| 97 | 1+1.07e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.018626829908871255952064118805, −8.208400702806391412426210870411, −7.76436441323046331639059024888, −7.19697706434239061326632652292, −5.57765320761655949895918387344, −4.12968609341996431393932687645, −3.24089932177548019645144658528, −2.63911284277382821389997664787, −1.11972073492575605683185063231, 0,
1.11972073492575605683185063231, 2.63911284277382821389997664787, 3.24089932177548019645144658528, 4.12968609341996431393932687645, 5.57765320761655949895918387344, 7.19697706434239061326632652292, 7.76436441323046331639059024888, 8.208400702806391412426210870411, 9.018626829908871255952064118805