Properties

Label 2-538-1.1-c7-0-98
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 64.7·3-s + 64·4-s − 436.·5-s − 517.·6-s − 168.·7-s − 512·8-s + 2.00e3·9-s + 3.48e3·10-s − 5.90e3·11-s + 4.14e3·12-s + 4.98e3·13-s + 1.35e3·14-s − 2.82e4·15-s + 4.09e3·16-s + 1.38e4·17-s − 1.60e4·18-s + 3.54e4·19-s − 2.79e4·20-s − 1.09e4·21-s + 4.72e4·22-s + 794.·23-s − 3.31e4·24-s + 1.12e5·25-s − 3.98e4·26-s − 1.20e4·27-s − 1.08e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.38·3-s + 0.5·4-s − 1.56·5-s − 0.978·6-s − 0.186·7-s − 0.353·8-s + 0.915·9-s + 1.10·10-s − 1.33·11-s + 0.691·12-s + 0.628·13-s + 0.131·14-s − 2.15·15-s + 0.250·16-s + 0.685·17-s − 0.647·18-s + 1.18·19-s − 0.780·20-s − 0.257·21-s + 0.946·22-s + 0.0136·23-s − 0.489·24-s + 1.43·25-s − 0.444·26-s − 0.117·27-s − 0.0930·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
269 \( 1 - 1.94e7T \)
good3 \( 1 - 64.7T + 2.18e3T^{2} \)
5 \( 1 + 436.T + 7.81e4T^{2} \)
7 \( 1 + 168.T + 8.23e5T^{2} \)
11 \( 1 + 5.90e3T + 1.94e7T^{2} \)
13 \( 1 - 4.98e3T + 6.27e7T^{2} \)
17 \( 1 - 1.38e4T + 4.10e8T^{2} \)
19 \( 1 - 3.54e4T + 8.93e8T^{2} \)
23 \( 1 - 794.T + 3.40e9T^{2} \)
29 \( 1 + 1.34e5T + 1.72e10T^{2} \)
31 \( 1 - 2.83e5T + 2.75e10T^{2} \)
37 \( 1 + 2.90e5T + 9.49e10T^{2} \)
41 \( 1 - 2.96e5T + 1.94e11T^{2} \)
43 \( 1 - 5.52e5T + 2.71e11T^{2} \)
47 \( 1 - 1.24e6T + 5.06e11T^{2} \)
53 \( 1 - 3.51e4T + 1.17e12T^{2} \)
59 \( 1 + 7.19e5T + 2.48e12T^{2} \)
61 \( 1 - 4.50e5T + 3.14e12T^{2} \)
67 \( 1 - 2.63e6T + 6.06e12T^{2} \)
71 \( 1 + 3.89e6T + 9.09e12T^{2} \)
73 \( 1 + 1.66e6T + 1.10e13T^{2} \)
79 \( 1 + 1.95e6T + 1.92e13T^{2} \)
83 \( 1 + 5.27e6T + 2.71e13T^{2} \)
89 \( 1 + 6.84e6T + 4.42e13T^{2} \)
97 \( 1 + 1.07e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018626829908871255952064118805, −8.208400702806391412426210870411, −7.76436441323046331639059024888, −7.19697706434239061326632652292, −5.57765320761655949895918387344, −4.12968609341996431393932687645, −3.24089932177548019645144658528, −2.63911284277382821389997664787, −1.11972073492575605683185063231, 0, 1.11972073492575605683185063231, 2.63911284277382821389997664787, 3.24089932177548019645144658528, 4.12968609341996431393932687645, 5.57765320761655949895918387344, 7.19697706434239061326632652292, 7.76436441323046331639059024888, 8.208400702806391412426210870411, 9.018626829908871255952064118805

Graph of the $Z$-function along the critical line