Properties

Label 2-538-1.1-c7-0-40
Degree $2$
Conductor $538$
Sign $-1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 82.6·3-s + 64·4-s − 228.·5-s + 661.·6-s − 449.·7-s − 512·8-s + 4.64e3·9-s + 1.82e3·10-s − 1.32e3·11-s − 5.29e3·12-s − 8.21e3·13-s + 3.59e3·14-s + 1.88e4·15-s + 4.09e3·16-s + 2.25e4·17-s − 3.71e4·18-s − 2.92e4·19-s − 1.46e4·20-s + 3.71e4·21-s + 1.05e4·22-s − 9.67e4·23-s + 4.23e4·24-s − 2.60e4·25-s + 6.57e4·26-s − 2.03e5·27-s − 2.87e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.76·3-s + 0.5·4-s − 0.816·5-s + 1.25·6-s − 0.495·7-s − 0.353·8-s + 2.12·9-s + 0.577·10-s − 0.299·11-s − 0.883·12-s − 1.03·13-s + 0.350·14-s + 1.44·15-s + 0.250·16-s + 1.11·17-s − 1.50·18-s − 0.978·19-s − 0.408·20-s + 0.876·21-s + 0.211·22-s − 1.65·23-s + 0.625·24-s − 0.333·25-s + 0.733·26-s − 1.98·27-s − 0.247·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
269 \( 1 - 1.94e7T \)
good3 \( 1 + 82.6T + 2.18e3T^{2} \)
5 \( 1 + 228.T + 7.81e4T^{2} \)
7 \( 1 + 449.T + 8.23e5T^{2} \)
11 \( 1 + 1.32e3T + 1.94e7T^{2} \)
13 \( 1 + 8.21e3T + 6.27e7T^{2} \)
17 \( 1 - 2.25e4T + 4.10e8T^{2} \)
19 \( 1 + 2.92e4T + 8.93e8T^{2} \)
23 \( 1 + 9.67e4T + 3.40e9T^{2} \)
29 \( 1 - 1.38e5T + 1.72e10T^{2} \)
31 \( 1 + 2.60e5T + 2.75e10T^{2} \)
37 \( 1 - 8.25e4T + 9.49e10T^{2} \)
41 \( 1 - 7.88e5T + 1.94e11T^{2} \)
43 \( 1 + 9.96e5T + 2.71e11T^{2} \)
47 \( 1 + 7.62e4T + 5.06e11T^{2} \)
53 \( 1 - 4.00e5T + 1.17e12T^{2} \)
59 \( 1 - 1.76e6T + 2.48e12T^{2} \)
61 \( 1 + 2.45e6T + 3.14e12T^{2} \)
67 \( 1 - 8.69e5T + 6.06e12T^{2} \)
71 \( 1 - 1.65e6T + 9.09e12T^{2} \)
73 \( 1 - 5.17e6T + 1.10e13T^{2} \)
79 \( 1 - 6.08e6T + 1.92e13T^{2} \)
83 \( 1 + 6.19e6T + 2.71e13T^{2} \)
89 \( 1 - 5.65e6T + 4.42e13T^{2} \)
97 \( 1 - 6.73e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645844871967169834241509526037, −8.103246128127033904274412980882, −7.42788089894682414656340906366, −6.50315139656960914866137334508, −5.74623681147278097311658343939, −4.73768964142083637401290300871, −3.65824619068420940340202721663, −2.01910948530744845006006600608, −0.62010002493348291489827121907, 0, 0.62010002493348291489827121907, 2.01910948530744845006006600608, 3.65824619068420940340202721663, 4.73768964142083637401290300871, 5.74623681147278097311658343939, 6.50315139656960914866137334508, 7.42788089894682414656340906366, 8.103246128127033904274412980882, 9.645844871967169834241509526037

Graph of the $Z$-function along the critical line