Properties

Label 2-538-1.1-c7-0-61
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 47.1·3-s + 64·4-s + 395.·5-s − 377.·6-s + 1.40e3·7-s + 512·8-s + 37.6·9-s + 3.16e3·10-s − 3.67e3·11-s − 3.01e3·12-s − 1.22e4·13-s + 1.12e4·14-s − 1.86e4·15-s + 4.09e3·16-s − 2.35e4·17-s + 300.·18-s + 3.95e4·19-s + 2.52e4·20-s − 6.62e4·21-s − 2.94e4·22-s + 2.64e3·23-s − 2.41e4·24-s + 7.79e4·25-s − 9.83e4·26-s + 1.01e5·27-s + 8.99e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.00·3-s + 0.5·4-s + 1.41·5-s − 0.713·6-s + 1.54·7-s + 0.353·8-s + 0.0171·9-s + 0.999·10-s − 0.832·11-s − 0.504·12-s − 1.55·13-s + 1.09·14-s − 1.42·15-s + 0.250·16-s − 1.16·17-s + 0.0121·18-s + 1.32·19-s + 0.706·20-s − 1.56·21-s − 0.588·22-s + 0.0453·23-s − 0.356·24-s + 0.997·25-s − 1.09·26-s + 0.991·27-s + 0.773·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.674471125\)
\(L(\frac12)\) \(\approx\) \(3.674471125\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
269 \( 1 - 1.94e7T \)
good3 \( 1 + 47.1T + 2.18e3T^{2} \)
5 \( 1 - 395.T + 7.81e4T^{2} \)
7 \( 1 - 1.40e3T + 8.23e5T^{2} \)
11 \( 1 + 3.67e3T + 1.94e7T^{2} \)
13 \( 1 + 1.22e4T + 6.27e7T^{2} \)
17 \( 1 + 2.35e4T + 4.10e8T^{2} \)
19 \( 1 - 3.95e4T + 8.93e8T^{2} \)
23 \( 1 - 2.64e3T + 3.40e9T^{2} \)
29 \( 1 - 3.18e4T + 1.72e10T^{2} \)
31 \( 1 - 2.85e5T + 2.75e10T^{2} \)
37 \( 1 + 5.04e5T + 9.49e10T^{2} \)
41 \( 1 + 8.75e4T + 1.94e11T^{2} \)
43 \( 1 - 4.74e5T + 2.71e11T^{2} \)
47 \( 1 - 6.80e5T + 5.06e11T^{2} \)
53 \( 1 + 1.09e5T + 1.17e12T^{2} \)
59 \( 1 - 1.50e6T + 2.48e12T^{2} \)
61 \( 1 - 2.38e6T + 3.14e12T^{2} \)
67 \( 1 - 2.45e6T + 6.06e12T^{2} \)
71 \( 1 + 4.15e6T + 9.09e12T^{2} \)
73 \( 1 + 5.34e6T + 1.10e13T^{2} \)
79 \( 1 - 3.64e6T + 1.92e13T^{2} \)
83 \( 1 - 6.93e6T + 2.71e13T^{2} \)
89 \( 1 - 6.11e6T + 4.42e13T^{2} \)
97 \( 1 - 1.79e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10400753599642899101702765634, −8.830533754242792770816567408938, −7.65229877099166084907076503783, −6.72762857160128056577883988915, −5.66197897792254238854864223435, −5.10698494641493229434436499239, −4.69190444998912304757557745145, −2.64627666828929645758140809602, −2.01169691526399696709088351941, −0.78192437749901104675321600759, 0.78192437749901104675321600759, 2.01169691526399696709088351941, 2.64627666828929645758140809602, 4.69190444998912304757557745145, 5.10698494641493229434436499239, 5.66197897792254238854864223435, 6.72762857160128056577883988915, 7.65229877099166084907076503783, 8.830533754242792770816567408938, 10.10400753599642899101702765634

Graph of the $Z$-function along the critical line