L(s) = 1 | + 8·2-s − 47.1·3-s + 64·4-s + 395.·5-s − 377.·6-s + 1.40e3·7-s + 512·8-s + 37.6·9-s + 3.16e3·10-s − 3.67e3·11-s − 3.01e3·12-s − 1.22e4·13-s + 1.12e4·14-s − 1.86e4·15-s + 4.09e3·16-s − 2.35e4·17-s + 300.·18-s + 3.95e4·19-s + 2.52e4·20-s − 6.62e4·21-s − 2.94e4·22-s + 2.64e3·23-s − 2.41e4·24-s + 7.79e4·25-s − 9.83e4·26-s + 1.01e5·27-s + 8.99e4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.00·3-s + 0.5·4-s + 1.41·5-s − 0.713·6-s + 1.54·7-s + 0.353·8-s + 0.0171·9-s + 0.999·10-s − 0.832·11-s − 0.504·12-s − 1.55·13-s + 1.09·14-s − 1.42·15-s + 0.250·16-s − 1.16·17-s + 0.0121·18-s + 1.32·19-s + 0.706·20-s − 1.56·21-s − 0.588·22-s + 0.0453·23-s − 0.356·24-s + 0.997·25-s − 1.09·26-s + 0.991·27-s + 0.773·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(538s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
3.674471125 |
L(21) |
≈ |
3.674471125 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−8T |
| 269 | 1−1.94e7T |
good | 3 | 1+47.1T+2.18e3T2 |
| 5 | 1−395.T+7.81e4T2 |
| 7 | 1−1.40e3T+8.23e5T2 |
| 11 | 1+3.67e3T+1.94e7T2 |
| 13 | 1+1.22e4T+6.27e7T2 |
| 17 | 1+2.35e4T+4.10e8T2 |
| 19 | 1−3.95e4T+8.93e8T2 |
| 23 | 1−2.64e3T+3.40e9T2 |
| 29 | 1−3.18e4T+1.72e10T2 |
| 31 | 1−2.85e5T+2.75e10T2 |
| 37 | 1+5.04e5T+9.49e10T2 |
| 41 | 1+8.75e4T+1.94e11T2 |
| 43 | 1−4.74e5T+2.71e11T2 |
| 47 | 1−6.80e5T+5.06e11T2 |
| 53 | 1+1.09e5T+1.17e12T2 |
| 59 | 1−1.50e6T+2.48e12T2 |
| 61 | 1−2.38e6T+3.14e12T2 |
| 67 | 1−2.45e6T+6.06e12T2 |
| 71 | 1+4.15e6T+9.09e12T2 |
| 73 | 1+5.34e6T+1.10e13T2 |
| 79 | 1−3.64e6T+1.92e13T2 |
| 83 | 1−6.93e6T+2.71e13T2 |
| 89 | 1−6.11e6T+4.42e13T2 |
| 97 | 1−1.79e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10400753599642899101702765634, −8.830533754242792770816567408938, −7.65229877099166084907076503783, −6.72762857160128056577883988915, −5.66197897792254238854864223435, −5.10698494641493229434436499239, −4.69190444998912304757557745145, −2.64627666828929645758140809602, −2.01169691526399696709088351941, −0.78192437749901104675321600759,
0.78192437749901104675321600759, 2.01169691526399696709088351941, 2.64627666828929645758140809602, 4.69190444998912304757557745145, 5.10698494641493229434436499239, 5.66197897792254238854864223435, 6.72762857160128056577883988915, 7.65229877099166084907076503783, 8.830533754242792770816567408938, 10.10400753599642899101702765634