L(s) = 1 | + 8·2-s + 13.5·3-s + 64·4-s − 206.·5-s + 108.·6-s − 1.55e3·7-s + 512·8-s − 2.00e3·9-s − 1.65e3·10-s − 826.·11-s + 866.·12-s − 1.27e4·13-s − 1.24e4·14-s − 2.80e3·15-s + 4.09e3·16-s + 3.25e4·17-s − 1.60e4·18-s − 5.80e4·19-s − 1.32e4·20-s − 2.10e4·21-s − 6.61e3·22-s − 108.·23-s + 6.93e3·24-s − 3.53e4·25-s − 1.01e5·26-s − 5.67e4·27-s − 9.92e4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.289·3-s + 0.5·4-s − 0.740·5-s + 0.204·6-s − 1.70·7-s + 0.353·8-s − 0.916·9-s − 0.523·10-s − 0.187·11-s + 0.144·12-s − 1.60·13-s − 1.20·14-s − 0.214·15-s + 0.250·16-s + 1.60·17-s − 0.647·18-s − 1.94·19-s − 0.370·20-s − 0.494·21-s − 0.132·22-s − 0.00186·23-s + 0.102·24-s − 0.452·25-s − 1.13·26-s − 0.554·27-s − 0.854·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(538s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
0.7033716333 |
L(21) |
≈ |
0.7033716333 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−8T |
| 269 | 1−1.94e7T |
good | 3 | 1−13.5T+2.18e3T2 |
| 5 | 1+206.T+7.81e4T2 |
| 7 | 1+1.55e3T+8.23e5T2 |
| 11 | 1+826.T+1.94e7T2 |
| 13 | 1+1.27e4T+6.27e7T2 |
| 17 | 1−3.25e4T+4.10e8T2 |
| 19 | 1+5.80e4T+8.93e8T2 |
| 23 | 1+108.T+3.40e9T2 |
| 29 | 1+5.48e4T+1.72e10T2 |
| 31 | 1−3.22e5T+2.75e10T2 |
| 37 | 1+4.39e5T+9.49e10T2 |
| 41 | 1+7.58e5T+1.94e11T2 |
| 43 | 1−7.92e4T+2.71e11T2 |
| 47 | 1+2.34e5T+5.06e11T2 |
| 53 | 1−5.78e5T+1.17e12T2 |
| 59 | 1−2.54e6T+2.48e12T2 |
| 61 | 1+6.68e5T+3.14e12T2 |
| 67 | 1+2.35e6T+6.06e12T2 |
| 71 | 1+7.49e5T+9.09e12T2 |
| 73 | 1+1.40e6T+1.10e13T2 |
| 79 | 1−3.21e6T+1.92e13T2 |
| 83 | 1−1.97e5T+2.71e13T2 |
| 89 | 1−6.87e6T+4.42e13T2 |
| 97 | 1−7.02e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.937248080429228287156939567499, −8.704636934418600274310861084284, −7.80283273108565267581732450180, −6.86482220922954964779493722181, −6.05201570148342279713416389915, −5.02459763050559563540063172551, −3.80501122964181138781046899621, −3.11382718845917595773140992636, −2.31062949533681018119714304327, −0.29301971281268955295600507413,
0.29301971281268955295600507413, 2.31062949533681018119714304327, 3.11382718845917595773140992636, 3.80501122964181138781046899621, 5.02459763050559563540063172551, 6.05201570148342279713416389915, 6.86482220922954964779493722181, 7.80283273108565267581732450180, 8.704636934418600274310861084284, 9.937248080429228287156939567499