Properties

Label 2-538-1.1-c7-0-14
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $168.063$
Root an. cond. $12.9639$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 13.5·3-s + 64·4-s − 206.·5-s + 108.·6-s − 1.55e3·7-s + 512·8-s − 2.00e3·9-s − 1.65e3·10-s − 826.·11-s + 866.·12-s − 1.27e4·13-s − 1.24e4·14-s − 2.80e3·15-s + 4.09e3·16-s + 3.25e4·17-s − 1.60e4·18-s − 5.80e4·19-s − 1.32e4·20-s − 2.10e4·21-s − 6.61e3·22-s − 108.·23-s + 6.93e3·24-s − 3.53e4·25-s − 1.01e5·26-s − 5.67e4·27-s − 9.92e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.289·3-s + 0.5·4-s − 0.740·5-s + 0.204·6-s − 1.70·7-s + 0.353·8-s − 0.916·9-s − 0.523·10-s − 0.187·11-s + 0.144·12-s − 1.60·13-s − 1.20·14-s − 0.214·15-s + 0.250·16-s + 1.60·17-s − 0.647·18-s − 1.94·19-s − 0.370·20-s − 0.494·21-s − 0.132·22-s − 0.00186·23-s + 0.102·24-s − 0.452·25-s − 1.13·26-s − 0.554·27-s − 0.854·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(168.063\)
Root analytic conductor: \(12.9639\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.7033716333\)
\(L(\frac12)\) \(\approx\) \(0.7033716333\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
269 \( 1 - 1.94e7T \)
good3 \( 1 - 13.5T + 2.18e3T^{2} \)
5 \( 1 + 206.T + 7.81e4T^{2} \)
7 \( 1 + 1.55e3T + 8.23e5T^{2} \)
11 \( 1 + 826.T + 1.94e7T^{2} \)
13 \( 1 + 1.27e4T + 6.27e7T^{2} \)
17 \( 1 - 3.25e4T + 4.10e8T^{2} \)
19 \( 1 + 5.80e4T + 8.93e8T^{2} \)
23 \( 1 + 108.T + 3.40e9T^{2} \)
29 \( 1 + 5.48e4T + 1.72e10T^{2} \)
31 \( 1 - 3.22e5T + 2.75e10T^{2} \)
37 \( 1 + 4.39e5T + 9.49e10T^{2} \)
41 \( 1 + 7.58e5T + 1.94e11T^{2} \)
43 \( 1 - 7.92e4T + 2.71e11T^{2} \)
47 \( 1 + 2.34e5T + 5.06e11T^{2} \)
53 \( 1 - 5.78e5T + 1.17e12T^{2} \)
59 \( 1 - 2.54e6T + 2.48e12T^{2} \)
61 \( 1 + 6.68e5T + 3.14e12T^{2} \)
67 \( 1 + 2.35e6T + 6.06e12T^{2} \)
71 \( 1 + 7.49e5T + 9.09e12T^{2} \)
73 \( 1 + 1.40e6T + 1.10e13T^{2} \)
79 \( 1 - 3.21e6T + 1.92e13T^{2} \)
83 \( 1 - 1.97e5T + 2.71e13T^{2} \)
89 \( 1 - 6.87e6T + 4.42e13T^{2} \)
97 \( 1 - 7.02e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.937248080429228287156939567499, −8.704636934418600274310861084284, −7.80283273108565267581732450180, −6.86482220922954964779493722181, −6.05201570148342279713416389915, −5.02459763050559563540063172551, −3.80501122964181138781046899621, −3.11382718845917595773140992636, −2.31062949533681018119714304327, −0.29301971281268955295600507413, 0.29301971281268955295600507413, 2.31062949533681018119714304327, 3.11382718845917595773140992636, 3.80501122964181138781046899621, 5.02459763050559563540063172551, 6.05201570148342279713416389915, 6.86482220922954964779493722181, 7.80283273108565267581732450180, 8.704636934418600274310861084284, 9.937248080429228287156939567499

Graph of the $Z$-function along the critical line