Properties

Label 2-54-1.1-c7-0-5
Degree $2$
Conductor $54$
Sign $1$
Analytic cond. $16.8687$
Root an. cond. $4.10716$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 64·4-s + 465.·5-s − 49.7·7-s + 512·8-s + 3.72e3·10-s − 302.·11-s − 5.51e3·13-s − 397.·14-s + 4.09e3·16-s + 2.26e4·17-s + 5.28e4·19-s + 2.98e4·20-s − 2.42e3·22-s − 2.00e4·23-s + 1.38e5·25-s − 4.41e4·26-s − 3.18e3·28-s − 2.50e5·29-s + 2.62e5·31-s + 3.27e4·32-s + 1.81e5·34-s − 2.31e4·35-s − 4.60e5·37-s + 4.22e5·38-s + 2.38e5·40-s + 2.40e5·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.66·5-s − 0.0548·7-s + 0.353·8-s + 1.17·10-s − 0.0686·11-s − 0.696·13-s − 0.0387·14-s + 0.250·16-s + 1.11·17-s + 1.76·19-s + 0.833·20-s − 0.0485·22-s − 0.343·23-s + 1.77·25-s − 0.492·26-s − 0.0274·28-s − 1.90·29-s + 1.58·31-s + 0.176·32-s + 0.790·34-s − 0.0913·35-s − 1.49·37-s + 1.24·38-s + 0.589·40-s + 0.544·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(16.8687\)
Root analytic conductor: \(4.10716\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.764188434\)
\(L(\frac12)\) \(\approx\) \(3.764188434\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
3 \( 1 \)
good5 \( 1 - 465.T + 7.81e4T^{2} \)
7 \( 1 + 49.7T + 8.23e5T^{2} \)
11 \( 1 + 302.T + 1.94e7T^{2} \)
13 \( 1 + 5.51e3T + 6.27e7T^{2} \)
17 \( 1 - 2.26e4T + 4.10e8T^{2} \)
19 \( 1 - 5.28e4T + 8.93e8T^{2} \)
23 \( 1 + 2.00e4T + 3.40e9T^{2} \)
29 \( 1 + 2.50e5T + 1.72e10T^{2} \)
31 \( 1 - 2.62e5T + 2.75e10T^{2} \)
37 \( 1 + 4.60e5T + 9.49e10T^{2} \)
41 \( 1 - 2.40e5T + 1.94e11T^{2} \)
43 \( 1 - 5.68e5T + 2.71e11T^{2} \)
47 \( 1 + 8.75e5T + 5.06e11T^{2} \)
53 \( 1 + 8.11e5T + 1.17e12T^{2} \)
59 \( 1 - 1.29e6T + 2.48e12T^{2} \)
61 \( 1 + 1.62e6T + 3.14e12T^{2} \)
67 \( 1 + 1.84e6T + 6.06e12T^{2} \)
71 \( 1 + 4.56e6T + 9.09e12T^{2} \)
73 \( 1 + 1.91e6T + 1.10e13T^{2} \)
79 \( 1 + 1.81e6T + 1.92e13T^{2} \)
83 \( 1 + 3.08e6T + 2.71e13T^{2} \)
89 \( 1 - 4.10e6T + 4.42e13T^{2} \)
97 \( 1 - 7.91e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90950599947658951664704073546, −12.95786390292402414818385045647, −11.79280731637399444260730420087, −10.20831092861733402294486381292, −9.461337073081180425858300970244, −7.46520902792111729748488978177, −5.98212604342142745302997430887, −5.12905809123235708668941095833, −3.02168254800358012955589067168, −1.55726676827836595875658551509, 1.55726676827836595875658551509, 3.02168254800358012955589067168, 5.12905809123235708668941095833, 5.98212604342142745302997430887, 7.46520902792111729748488978177, 9.461337073081180425858300970244, 10.20831092861733402294486381292, 11.79280731637399444260730420087, 12.95786390292402414818385045647, 13.90950599947658951664704073546

Graph of the $Z$-function along the critical line