Properties

Label 2-5400-1.1-c1-0-51
Degree $2$
Conductor $5400$
Sign $-1$
Analytic cond. $43.1192$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s − 13-s + 17-s + 4·19-s − 23-s − 5·29-s + 31-s − 6·37-s − 7·43-s − 7·47-s − 3·49-s + 12·53-s − 4·59-s + 10·61-s + 4·67-s + 12·71-s − 6·73-s − 2·77-s + 15·79-s − 2·83-s − 12·89-s + 2·91-s − 10·97-s − 15·101-s + 14·103-s − 18·107-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s − 0.277·13-s + 0.242·17-s + 0.917·19-s − 0.208·23-s − 0.928·29-s + 0.179·31-s − 0.986·37-s − 1.06·43-s − 1.02·47-s − 3/7·49-s + 1.64·53-s − 0.520·59-s + 1.28·61-s + 0.488·67-s + 1.42·71-s − 0.702·73-s − 0.227·77-s + 1.68·79-s − 0.219·83-s − 1.27·89-s + 0.209·91-s − 1.01·97-s − 1.49·101-s + 1.37·103-s − 1.74·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5400\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(43.1192\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 7 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 15 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82345535627533775783630350642, −6.96719853107478672408551150634, −6.55542449257964893880718392929, −5.55740680485512638999219336582, −5.06535194220715717625815263592, −3.89874794188658379093535487826, −3.37995510842951450719705981465, −2.42314902571864051813800069073, −1.32227596152825304196870381381, 0, 1.32227596152825304196870381381, 2.42314902571864051813800069073, 3.37995510842951450719705981465, 3.89874794188658379093535487826, 5.06535194220715717625815263592, 5.55740680485512638999219336582, 6.55542449257964893880718392929, 6.96719853107478672408551150634, 7.82345535627533775783630350642

Graph of the $Z$-function along the critical line