L(s) = 1 | + 4i·7-s − 2·11-s + 4i·13-s + i·17-s + 5·19-s − 5i·23-s + 8·29-s + 7·31-s + 6i·37-s − 6·41-s − 2i·43-s + 8i·47-s − 9·49-s − 9i·53-s + 4·59-s + ⋯ |
L(s) = 1 | + 1.51i·7-s − 0.603·11-s + 1.10i·13-s + 0.242i·17-s + 1.14·19-s − 1.04i·23-s + 1.48·29-s + 1.25·31-s + 0.986i·37-s − 0.937·41-s − 0.304i·43-s + 1.16i·47-s − 1.28·49-s − 1.23i·53-s + 0.520·59-s + ⋯ |
Λ(s)=(=(5400s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(5400s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
5400
= 23⋅33⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
43.1192 |
Root analytic conductor: |
6.56652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5400(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5400, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.670908421 |
L(21) |
≈ |
1.670908421 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4iT−7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−iT−17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+5iT−23T2 |
| 29 | 1−8T+29T2 |
| 31 | 1−7T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+2iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1+9iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−13T+61T2 |
| 67 | 1−10iT−67T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+9T+79T2 |
| 83 | 1−17iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.457513604577591734207474731755, −7.912628774792344586356678604113, −6.64839939934742245942584932295, −6.48498415433447582404446566068, −5.34373350150100179052004926480, −4.98451315301008518332294637764, −4.00607476183968351693958705982, −2.80163996766485035779918020571, −2.44384031563773400378362663838, −1.21879466829391126529469352461,
0.49394191554712047749289178925, 1.28163865748179823440418228252, 2.73570912604652435023129315319, 3.38695235142391045594797925299, 4.22034593240676834943524441166, 5.07645861724610998857834536149, 5.63898729066692991743344834641, 6.71930137280208014404550719121, 7.27377081650651491099368540753, 7.888779604446513700235520831823