Properties

Label 2-5408-1.1-c1-0-68
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.90·3-s − 2·5-s − 0.779·7-s + 5.46·9-s + 5.03·11-s + 5.81·15-s − 6.46·17-s + 0.779·19-s + 2.26·21-s − 7.16·23-s − 25-s − 7.16·27-s + 3·29-s + 1.55·31-s − 14.6·33-s + 1.55·35-s − 4.26·37-s + 3.19·41-s + 8.72·43-s − 10.9·45-s + 7.37·47-s − 6.39·49-s + 18.8·51-s + 9.46·53-s − 10.0·55-s − 2.26·57-s − 12.4·59-s + ⋯
L(s)  = 1  − 1.67·3-s − 0.894·5-s − 0.294·7-s + 1.82·9-s + 1.51·11-s + 1.50·15-s − 1.56·17-s + 0.178·19-s + 0.494·21-s − 1.49·23-s − 0.200·25-s − 1.37·27-s + 0.557·29-s + 0.280·31-s − 2.55·33-s + 0.263·35-s − 0.701·37-s + 0.499·41-s + 1.33·43-s − 1.62·45-s + 1.07·47-s − 0.913·49-s + 2.63·51-s + 1.29·53-s − 1.35·55-s − 0.300·57-s − 1.61·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2.90T + 3T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 0.779T + 7T^{2} \)
11 \( 1 - 5.03T + 11T^{2} \)
17 \( 1 + 6.46T + 17T^{2} \)
19 \( 1 - 0.779T + 19T^{2} \)
23 \( 1 + 7.16T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 1.55T + 31T^{2} \)
37 \( 1 + 4.26T + 37T^{2} \)
41 \( 1 - 3.19T + 41T^{2} \)
43 \( 1 - 8.72T + 43T^{2} \)
47 \( 1 - 7.37T + 47T^{2} \)
53 \( 1 - 9.46T + 53T^{2} \)
59 \( 1 + 12.4T + 59T^{2} \)
61 \( 1 - 3T + 61T^{2} \)
67 \( 1 - 0.779T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 10.0T + 79T^{2} \)
83 \( 1 - 10.0T + 83T^{2} \)
89 \( 1 + 9.19T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57914887267635972648656233807, −6.89086408518852090587322629485, −6.32093488670479099032960443704, −5.88414033717349304351146595389, −4.79390645102739545291834903506, −4.19225553711093656517417359077, −3.72208523600426591746580630356, −2.15305338577755903441413348555, −0.950908081088251460378199313652, 0, 0.950908081088251460378199313652, 2.15305338577755903441413348555, 3.72208523600426591746580630356, 4.19225553711093656517417359077, 4.79390645102739545291834903506, 5.88414033717349304351146595389, 6.32093488670479099032960443704, 6.89086408518852090587322629485, 7.57914887267635972648656233807

Graph of the $Z$-function along the critical line