Properties

Label 2-5408-1.1-c1-0-55
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·3-s − 2·5-s − 4.62·7-s − 1.46·9-s − 2.14·11-s + 2.47·15-s + 0.464·17-s + 4.62·19-s + 5.73·21-s + 5.53·23-s − 25-s + 5.53·27-s + 3·29-s + 9.25·31-s + 2.66·33-s + 9.25·35-s − 7.73·37-s − 7.19·41-s + 3.71·43-s + 2.92·45-s + 11.7·47-s + 14.3·49-s − 0.575·51-s + 2.53·53-s + 4.29·55-s − 5.73·57-s − 9.58·59-s + ⋯
L(s)  = 1  − 0.715·3-s − 0.894·5-s − 1.74·7-s − 0.488·9-s − 0.647·11-s + 0.639·15-s + 0.112·17-s + 1.06·19-s + 1.25·21-s + 1.15·23-s − 0.200·25-s + 1.06·27-s + 0.557·29-s + 1.66·31-s + 0.463·33-s + 1.56·35-s − 1.27·37-s − 1.12·41-s + 0.566·43-s + 0.436·45-s + 1.71·47-s + 2.05·49-s − 0.0805·51-s + 0.348·53-s + 0.578·55-s − 0.759·57-s − 1.24·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 1.23T + 3T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 4.62T + 7T^{2} \)
11 \( 1 + 2.14T + 11T^{2} \)
17 \( 1 - 0.464T + 17T^{2} \)
19 \( 1 - 4.62T + 19T^{2} \)
23 \( 1 - 5.53T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 9.25T + 31T^{2} \)
37 \( 1 + 7.73T + 37T^{2} \)
41 \( 1 + 7.19T + 41T^{2} \)
43 \( 1 - 3.71T + 43T^{2} \)
47 \( 1 - 11.7T + 47T^{2} \)
53 \( 1 - 2.53T + 53T^{2} \)
59 \( 1 + 9.58T + 59T^{2} \)
61 \( 1 - 3T + 61T^{2} \)
67 \( 1 - 4.62T + 67T^{2} \)
71 \( 1 + 6.43T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 4.29T + 79T^{2} \)
83 \( 1 + 4.29T + 83T^{2} \)
89 \( 1 - 1.19T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67028055175067437080811384122, −7.01473896863702454587700602065, −6.41976004844199625543147128010, −5.66485689895821009192110380172, −5.03987297724527830968347051936, −4.05030222647526952038492905098, −3.11352139298563440182612829165, −2.80913507372797213764629690077, −0.866009157093505434128931064751, 0, 0.866009157093505434128931064751, 2.80913507372797213764629690077, 3.11352139298563440182612829165, 4.05030222647526952038492905098, 5.03987297724527830968347051936, 5.66485689895821009192110380172, 6.41976004844199625543147128010, 7.01473896863702454587700602065, 7.67028055175067437080811384122

Graph of the $Z$-function along the critical line