L(s) = 1 | + 2.96·3-s + 1.23·5-s + 4.80·7-s + 5.80·9-s − 4.80·11-s + 3.66·15-s − 17-s + 5.13·19-s + 14.2·21-s − 3.96·23-s − 3.47·25-s + 8.32·27-s + 1.33·29-s + 3.66·31-s − 14.2·33-s + 5.93·35-s − 3.62·37-s + 7.66·41-s − 2.38·43-s + 7.16·45-s + 5.94·47-s + 16.0·49-s − 2.96·51-s + 0.139·53-s − 5.93·55-s + 15.2·57-s + 5.47·59-s + ⋯ |
L(s) = 1 | + 1.71·3-s + 0.552·5-s + 1.81·7-s + 1.93·9-s − 1.44·11-s + 0.946·15-s − 0.242·17-s + 1.17·19-s + 3.11·21-s − 0.825·23-s − 0.694·25-s + 1.60·27-s + 0.247·29-s + 0.658·31-s − 2.48·33-s + 1.00·35-s − 0.595·37-s + 1.19·41-s − 0.364·43-s + 1.06·45-s + 0.867·47-s + 2.29·49-s − 0.415·51-s + 0.0191·53-s − 0.800·55-s + 2.01·57-s + 0.712·59-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.137554272 |
L(21) |
≈ |
5.137554272 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1−2.96T+3T2 |
| 5 | 1−1.23T+5T2 |
| 7 | 1−4.80T+7T2 |
| 11 | 1+4.80T+11T2 |
| 17 | 1+T+17T2 |
| 19 | 1−5.13T+19T2 |
| 23 | 1+3.96T+23T2 |
| 29 | 1−1.33T+29T2 |
| 31 | 1−3.66T+31T2 |
| 37 | 1+3.62T+37T2 |
| 41 | 1−7.66T+41T2 |
| 43 | 1+2.38T+43T2 |
| 47 | 1−5.94T+47T2 |
| 53 | 1−0.139T+53T2 |
| 59 | 1−5.47T+59T2 |
| 61 | 1−4.94T+61T2 |
| 67 | 1+6.74T+67T2 |
| 71 | 1+1.13T+71T2 |
| 73 | 1−5.27T+73T2 |
| 79 | 1+4.77T+79T2 |
| 83 | 1+1.60T+83T2 |
| 89 | 1−13.2T+89T2 |
| 97 | 1−15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.102098829400259032741422226381, −7.73848525305371960471728038311, −7.21601879929890544657723196023, −5.85574625251574074579957445111, −5.13746139800441031827460045007, −4.46892552812076689336983611688, −3.59264457097128764747637843461, −2.50739878676306923487312739145, −2.19134061192460131251088737841, −1.24631448189815198334064489324,
1.24631448189815198334064489324, 2.19134061192460131251088737841, 2.50739878676306923487312739145, 3.59264457097128764747637843461, 4.46892552812076689336983611688, 5.13746139800441031827460045007, 5.85574625251574074579957445111, 7.21601879929890544657723196023, 7.73848525305371960471728038311, 8.102098829400259032741422226381