L(s) = 1 | − 4·5-s − 3·9-s + 2·17-s + 11·25-s + 10·29-s + 12·37-s − 8·41-s + 12·45-s − 7·49-s + 14·53-s − 10·61-s − 16·73-s + 9·81-s − 8·85-s − 16·89-s − 8·97-s + 2·101-s − 20·109-s + 14·113-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 9-s + 0.485·17-s + 11/5·25-s + 1.85·29-s + 1.97·37-s − 1.24·41-s + 1.78·45-s − 49-s + 1.92·53-s − 1.28·61-s − 1.87·73-s + 81-s − 0.867·85-s − 1.69·89-s − 0.812·97-s + 0.199·101-s − 1.91·109-s + 1.31·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + 4 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 12 T + p T^{2} \) |
| 41 | \( 1 + 8 T + p T^{2} \) |
| 43 | \( 1 + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 14 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 16 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 16 T + p T^{2} \) |
| 97 | \( 1 + 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.988612977350406093974206442013, −7.21424279733010872572454801516, −6.49364081247895273094607913476, −5.62302150895633800615973468947, −4.70807460073308666993587405749, −4.14113725726325628790675953937, −3.21139015568415693943466713575, −2.72602212485500455177659066469, −1.04864477909657256988988373490, 0,
1.04864477909657256988988373490, 2.72602212485500455177659066469, 3.21139015568415693943466713575, 4.14113725726325628790675953937, 4.70807460073308666993587405749, 5.62302150895633800615973468947, 6.49364081247895273094607913476, 7.21424279733010872572454801516, 7.988612977350406093974206442013