L(s) = 1 | − 4·5-s − 3·9-s + 2·17-s + 11·25-s + 10·29-s + 12·37-s − 8·41-s + 12·45-s − 7·49-s + 14·53-s − 10·61-s − 16·73-s + 9·81-s − 8·85-s − 16·89-s − 8·97-s + 2·101-s − 20·109-s + 14·113-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 9-s + 0.485·17-s + 11/5·25-s + 1.85·29-s + 1.97·37-s − 1.24·41-s + 1.78·45-s − 49-s + 1.92·53-s − 1.28·61-s − 1.87·73-s + 81-s − 0.867·85-s − 1.69·89-s − 0.812·97-s + 0.199·101-s − 1.91·109-s + 1.31·113-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1 | |
| 13 | 1 | |
good | 3 | 1+pT2 | 1.3.a |
| 5 | 1+4T+pT2 | 1.5.e |
| 7 | 1+pT2 | 1.7.a |
| 11 | 1+pT2 | 1.11.a |
| 17 | 1−2T+pT2 | 1.17.ac |
| 19 | 1+pT2 | 1.19.a |
| 23 | 1+pT2 | 1.23.a |
| 29 | 1−10T+pT2 | 1.29.ak |
| 31 | 1+pT2 | 1.31.a |
| 37 | 1−12T+pT2 | 1.37.am |
| 41 | 1+8T+pT2 | 1.41.i |
| 43 | 1+pT2 | 1.43.a |
| 47 | 1+pT2 | 1.47.a |
| 53 | 1−14T+pT2 | 1.53.ao |
| 59 | 1+pT2 | 1.59.a |
| 61 | 1+10T+pT2 | 1.61.k |
| 67 | 1+pT2 | 1.67.a |
| 71 | 1+pT2 | 1.71.a |
| 73 | 1+16T+pT2 | 1.73.q |
| 79 | 1+pT2 | 1.79.a |
| 83 | 1+pT2 | 1.83.a |
| 89 | 1+16T+pT2 | 1.89.q |
| 97 | 1+8T+pT2 | 1.97.i |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.988612977350406093974206442013, −7.21424279733010872572454801516, −6.49364081247895273094607913476, −5.62302150895633800615973468947, −4.70807460073308666993587405749, −4.14113725726325628790675953937, −3.21139015568415693943466713575, −2.72602212485500455177659066469, −1.04864477909657256988988373490, 0,
1.04864477909657256988988373490, 2.72602212485500455177659066469, 3.21139015568415693943466713575, 4.14113725726325628790675953937, 4.70807460073308666993587405749, 5.62302150895633800615973468947, 6.49364081247895273094607913476, 7.21424279733010872572454801516, 7.988612977350406093974206442013