Properties

Label 2-5408-1.1-c1-0-19
Degree 22
Conductor 54085408
Sign 11
Analytic cond. 43.183043.1830
Root an. cond. 6.571386.57138
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.414·3-s − 2.82·5-s + 1.58·7-s − 2.82·9-s − 5.24·11-s − 1.17·15-s − 0.171·17-s + 7.24·19-s + 0.656·21-s − 7.24·23-s + 3.00·25-s − 2.41·27-s − 2.65·29-s − 5.65·31-s − 2.17·33-s − 4.48·35-s + 9.48·37-s − 0.171·41-s − 10.0·43-s + 8.00·45-s + 6·47-s − 4.48·49-s − 0.0710·51-s + 2.82·53-s + 14.8·55-s + 2.99·57-s + 7.24·59-s + ⋯
L(s)  = 1  + 0.239·3-s − 1.26·5-s + 0.599·7-s − 0.942·9-s − 1.58·11-s − 0.302·15-s − 0.0416·17-s + 1.66·19-s + 0.143·21-s − 1.51·23-s + 0.600·25-s − 0.464·27-s − 0.493·29-s − 1.01·31-s − 0.378·33-s − 0.758·35-s + 1.55·37-s − 0.0267·41-s − 1.53·43-s + 1.19·45-s + 0.875·47-s − 0.640·49-s − 0.00995·51-s + 0.388·53-s + 1.99·55-s + 0.397·57-s + 0.942·59-s + ⋯

Functional equation

Λ(s)=(5408s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(5408s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 54085408    =    251322^{5} \cdot 13^{2}
Sign: 11
Analytic conductor: 43.183043.1830
Root analytic conductor: 6.571386.57138
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 5408, ( :1/2), 1)(2,\ 5408,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.89805176400.8980517640
L(12)L(\frac12) \approx 0.89805176400.8980517640
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1 1
good3 10.414T+3T2 1 - 0.414T + 3T^{2}
5 1+2.82T+5T2 1 + 2.82T + 5T^{2}
7 11.58T+7T2 1 - 1.58T + 7T^{2}
11 1+5.24T+11T2 1 + 5.24T + 11T^{2}
17 1+0.171T+17T2 1 + 0.171T + 17T^{2}
19 17.24T+19T2 1 - 7.24T + 19T^{2}
23 1+7.24T+23T2 1 + 7.24T + 23T^{2}
29 1+2.65T+29T2 1 + 2.65T + 29T^{2}
31 1+5.65T+31T2 1 + 5.65T + 31T^{2}
37 19.48T+37T2 1 - 9.48T + 37T^{2}
41 1+0.171T+41T2 1 + 0.171T + 41T^{2}
43 1+10.0T+43T2 1 + 10.0T + 43T^{2}
47 16T+47T2 1 - 6T + 47T^{2}
53 12.82T+53T2 1 - 2.82T + 53T^{2}
59 17.24T+59T2 1 - 7.24T + 59T^{2}
61 17T+61T2 1 - 7T + 61T^{2}
67 14.75T+67T2 1 - 4.75T + 67T^{2}
71 11.24T+71T2 1 - 1.24T + 71T^{2}
73 1+4.48T+73T2 1 + 4.48T + 73T^{2}
79 1+6T+79T2 1 + 6T + 79T^{2}
83 14T+83T2 1 - 4T + 83T^{2}
89 1+14.6T+89T2 1 + 14.6T + 89T^{2}
97 1+9T+97T2 1 + 9T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.018940152901382145738569340880, −7.74899505596805586378443603872, −7.05112330546481534770556673989, −5.70313849210100602167971837618, −5.39443459808881737353947382543, −4.45387158450239639287965451044, −3.61668044150343897118175462775, −2.93760772170531985918527862877, −2.02622705927015647123348692929, −0.47808060415157618940497261117, 0.47808060415157618940497261117, 2.02622705927015647123348692929, 2.93760772170531985918527862877, 3.61668044150343897118175462775, 4.45387158450239639287965451044, 5.39443459808881737353947382543, 5.70313849210100602167971837618, 7.05112330546481534770556673989, 7.74899505596805586378443603872, 8.018940152901382145738569340880

Graph of the ZZ-function along the critical line