L(s) = 1 | + 1.73·3-s + 3.46·5-s − 3·7-s − 5·11-s + 5.99·15-s + 7·17-s − 5·19-s − 5.19·21-s − 5.19·23-s + 6.99·25-s − 5.19·27-s − 5·29-s − 2·31-s − 8.66·33-s − 10.3·35-s − 5.19·37-s − 1.73·41-s − 5.19·43-s + 4·47-s + 2·49-s + 12.1·51-s + 4·53-s − 17.3·55-s − 8.66·57-s − 7·59-s + 3·61-s + ⋯ |
L(s) = 1 | + 1.00·3-s + 1.54·5-s − 1.13·7-s − 1.50·11-s + 1.54·15-s + 1.69·17-s − 1.14·19-s − 1.13·21-s − 1.08·23-s + 1.39·25-s − 1.00·27-s − 0.928·29-s − 0.359·31-s − 1.50·33-s − 1.75·35-s − 0.854·37-s − 0.270·41-s − 0.792·43-s + 0.583·47-s + 0.285·49-s + 1.69·51-s + 0.549·53-s − 2.33·55-s − 1.14·57-s − 0.911·59-s + 0.384·61-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1−1.73T+3T2 |
| 5 | 1−3.46T+5T2 |
| 7 | 1+3T+7T2 |
| 11 | 1+5T+11T2 |
| 17 | 1−7T+17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+5.19T+23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+5.19T+37T2 |
| 41 | 1+1.73T+41T2 |
| 43 | 1+5.19T+43T2 |
| 47 | 1−4T+47T2 |
| 53 | 1−4T+53T2 |
| 59 | 1+7T+59T2 |
| 61 | 1−3T+61T2 |
| 67 | 1−3T+67T2 |
| 71 | 1+7T+71T2 |
| 73 | 1+3.46T+73T2 |
| 79 | 1−3.46T+79T2 |
| 83 | 1−14T+83T2 |
| 89 | 1+1.73T+89T2 |
| 97 | 1+8.66T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.937985447532870769502708935694, −7.18555194996690999610474164184, −6.20036243603643610623908836777, −5.72714835900501338984956196883, −5.16255748131257740172559120024, −3.77023152874057563501130278683, −3.09529316933892911448125077077, −2.41555511615693334495499462860, −1.76752275129678328409173856115, 0,
1.76752275129678328409173856115, 2.41555511615693334495499462860, 3.09529316933892911448125077077, 3.77023152874057563501130278683, 5.16255748131257740172559120024, 5.72714835900501338984956196883, 6.20036243603643610623908836777, 7.18555194996690999610474164184, 7.937985447532870769502708935694