Properties

Label 2-5408-1.1-c1-0-150
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s + 3.46·5-s − 3·7-s − 5·11-s + 5.99·15-s + 7·17-s − 5·19-s − 5.19·21-s − 5.19·23-s + 6.99·25-s − 5.19·27-s − 5·29-s − 2·31-s − 8.66·33-s − 10.3·35-s − 5.19·37-s − 1.73·41-s − 5.19·43-s + 4·47-s + 2·49-s + 12.1·51-s + 4·53-s − 17.3·55-s − 8.66·57-s − 7·59-s + 3·61-s + ⋯
L(s)  = 1  + 1.00·3-s + 1.54·5-s − 1.13·7-s − 1.50·11-s + 1.54·15-s + 1.69·17-s − 1.14·19-s − 1.13·21-s − 1.08·23-s + 1.39·25-s − 1.00·27-s − 0.928·29-s − 0.359·31-s − 1.50·33-s − 1.75·35-s − 0.854·37-s − 0.270·41-s − 0.792·43-s + 0.583·47-s + 0.285·49-s + 1.69·51-s + 0.549·53-s − 2.33·55-s − 1.14·57-s − 0.911·59-s + 0.384·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 1.73T + 3T^{2} \)
5 \( 1 - 3.46T + 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
11 \( 1 + 5T + 11T^{2} \)
17 \( 1 - 7T + 17T^{2} \)
19 \( 1 + 5T + 19T^{2} \)
23 \( 1 + 5.19T + 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 5.19T + 37T^{2} \)
41 \( 1 + 1.73T + 41T^{2} \)
43 \( 1 + 5.19T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 4T + 53T^{2} \)
59 \( 1 + 7T + 59T^{2} \)
61 \( 1 - 3T + 61T^{2} \)
67 \( 1 - 3T + 67T^{2} \)
71 \( 1 + 7T + 71T^{2} \)
73 \( 1 + 3.46T + 73T^{2} \)
79 \( 1 - 3.46T + 79T^{2} \)
83 \( 1 - 14T + 83T^{2} \)
89 \( 1 + 1.73T + 89T^{2} \)
97 \( 1 + 8.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.937985447532870769502708935694, −7.18555194996690999610474164184, −6.20036243603643610623908836777, −5.72714835900501338984956196883, −5.16255748131257740172559120024, −3.77023152874057563501130278683, −3.09529316933892911448125077077, −2.41555511615693334495499462860, −1.76752275129678328409173856115, 0, 1.76752275129678328409173856115, 2.41555511615693334495499462860, 3.09529316933892911448125077077, 3.77023152874057563501130278683, 5.16255748131257740172559120024, 5.72714835900501338984956196883, 6.20036243603643610623908836777, 7.18555194996690999610474164184, 7.937985447532870769502708935694

Graph of the $Z$-function along the critical line