Properties

Label 2-5408-1.1-c1-0-132
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.60·7-s − 3·9-s + 6.60·11-s − 7.21·17-s + 1.39·19-s − 5·25-s − 7.21·29-s − 10.6·31-s − 5.39·47-s − 0.211·49-s − 2·53-s − 11.8·59-s + 6·61-s − 7.81·63-s − 14.6·67-s + 15.8·71-s + 17.2·77-s + 9·81-s + 3.81·83-s − 19.8·99-s − 14·101-s + 7.21·113-s − 18.7·119-s + ⋯
L(s)  = 1  + 0.984·7-s − 9-s + 1.99·11-s − 1.74·17-s + 0.319·19-s − 25-s − 1.33·29-s − 1.90·31-s − 0.786·47-s − 0.0301·49-s − 0.274·53-s − 1.53·59-s + 0.768·61-s − 0.984·63-s − 1.78·67-s + 1.87·71-s + 1.96·77-s + 81-s + 0.418·83-s − 1.99·99-s − 1.39·101-s + 0.678·113-s − 1.72·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 3T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
11 \( 1 - 6.60T + 11T^{2} \)
17 \( 1 + 7.21T + 17T^{2} \)
19 \( 1 - 1.39T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 7.21T + 29T^{2} \)
31 \( 1 + 10.6T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 5.39T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 14.6T + 67T^{2} \)
71 \( 1 - 15.8T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 3.81T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85657080605858470662776653455, −7.08839238731151107299297754803, −6.35464806187057239310107954085, −5.71524195192442254381361816615, −4.85840413614407504474505684834, −4.05946404167772737791609805592, −3.45343090505247130253682627467, −2.10866697353315047337281727212, −1.55926025733303843746617125086, 0, 1.55926025733303843746617125086, 2.10866697353315047337281727212, 3.45343090505247130253682627467, 4.05946404167772737791609805592, 4.85840413614407504474505684834, 5.71524195192442254381361816615, 6.35464806187057239310107954085, 7.08839238731151107299297754803, 7.85657080605858470662776653455

Graph of the $Z$-function along the critical line