L(s) = 1 | + 2.60·7-s − 3·9-s + 6.60·11-s − 7.21·17-s + 1.39·19-s − 5·25-s − 7.21·29-s − 10.6·31-s − 5.39·47-s − 0.211·49-s − 2·53-s − 11.8·59-s + 6·61-s − 7.81·63-s − 14.6·67-s + 15.8·71-s + 17.2·77-s + 9·81-s + 3.81·83-s − 19.8·99-s − 14·101-s + 7.21·113-s − 18.7·119-s + ⋯ |
L(s) = 1 | + 0.984·7-s − 9-s + 1.99·11-s − 1.74·17-s + 0.319·19-s − 25-s − 1.33·29-s − 1.90·31-s − 0.786·47-s − 0.0301·49-s − 0.274·53-s − 1.53·59-s + 0.768·61-s − 0.984·63-s − 1.78·67-s + 1.87·71-s + 1.96·77-s + 81-s + 0.418·83-s − 1.99·99-s − 1.39·101-s + 0.678·113-s − 1.72·119-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+3T2 |
| 5 | 1+5T2 |
| 7 | 1−2.60T+7T2 |
| 11 | 1−6.60T+11T2 |
| 17 | 1+7.21T+17T2 |
| 19 | 1−1.39T+19T2 |
| 23 | 1+23T2 |
| 29 | 1+7.21T+29T2 |
| 31 | 1+10.6T+31T2 |
| 37 | 1+37T2 |
| 41 | 1+41T2 |
| 43 | 1+43T2 |
| 47 | 1+5.39T+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+11.8T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+14.6T+67T2 |
| 71 | 1−15.8T+71T2 |
| 73 | 1+73T2 |
| 79 | 1+79T2 |
| 83 | 1−3.81T+83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85657080605858470662776653455, −7.08839238731151107299297754803, −6.35464806187057239310107954085, −5.71524195192442254381361816615, −4.85840413614407504474505684834, −4.05946404167772737791609805592, −3.45343090505247130253682627467, −2.10866697353315047337281727212, −1.55926025733303843746617125086, 0,
1.55926025733303843746617125086, 2.10866697353315047337281727212, 3.45343090505247130253682627467, 4.05946404167772737791609805592, 4.85840413614407504474505684834, 5.71524195192442254381361816615, 6.35464806187057239310107954085, 7.08839238731151107299297754803, 7.85657080605858470662776653455