Properties

Label 2-5408-1.1-c1-0-112
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31·3-s + 3.31·7-s + 8·9-s + 3.31·11-s − 3·17-s + 3.31·19-s + 11·21-s − 3.31·23-s − 5·25-s + 16.5·27-s − 5·29-s + 11·33-s + 9·37-s − 3·41-s + 9.94·43-s − 6.63·47-s + 4·49-s − 9.94·51-s − 8·53-s + 11·57-s + 3.31·59-s − 9·61-s + 26.5·63-s + 9.94·67-s − 11·69-s + 9.94·71-s − 4·73-s + ⋯
L(s)  = 1  + 1.91·3-s + 1.25·7-s + 2.66·9-s + 1.00·11-s − 0.727·17-s + 0.760·19-s + 2.40·21-s − 0.691·23-s − 25-s + 3.19·27-s − 0.928·29-s + 1.91·33-s + 1.47·37-s − 0.468·41-s + 1.51·43-s − 0.967·47-s + 0.571·49-s − 1.39·51-s − 1.09·53-s + 1.45·57-s + 0.431·59-s − 1.15·61-s + 3.34·63-s + 1.21·67-s − 1.32·69-s + 1.18·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.357688750\)
\(L(\frac12)\) \(\approx\) \(5.357688750\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 3.31T + 3T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 3.31T + 7T^{2} \)
11 \( 1 - 3.31T + 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 - 3.31T + 19T^{2} \)
23 \( 1 + 3.31T + 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 9T + 37T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 - 9.94T + 43T^{2} \)
47 \( 1 + 6.63T + 47T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 - 3.31T + 59T^{2} \)
61 \( 1 + 9T + 61T^{2} \)
67 \( 1 - 9.94T + 67T^{2} \)
71 \( 1 - 9.94T + 71T^{2} \)
73 \( 1 + 4T + 73T^{2} \)
79 \( 1 - 6.63T + 79T^{2} \)
83 \( 1 + 13.2T + 83T^{2} \)
89 \( 1 + T + 89T^{2} \)
97 \( 1 - 7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.028311944909076092250368420788, −7.82933715641129474241412091755, −7.05399469174773880524133072779, −6.16507443014247462017687500131, −5.00113114810280731781938136005, −4.15341009478844214856371815292, −3.81000083226893259765993328479, −2.72914034810044166615713316978, −1.93633525696591744682747206544, −1.33093685204481500899422458147, 1.33093685204481500899422458147, 1.93633525696591744682747206544, 2.72914034810044166615713316978, 3.81000083226893259765993328479, 4.15341009478844214856371815292, 5.00113114810280731781938136005, 6.16507443014247462017687500131, 7.05399469174773880524133072779, 7.82933715641129474241412091755, 8.028311944909076092250368420788

Graph of the $Z$-function along the critical line