Properties

Label 2-5415-1.1-c1-0-12
Degree $2$
Conductor $5415$
Sign $1$
Analytic cond. $43.2389$
Root an. cond. $6.57563$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.18·2-s − 3-s − 0.592·4-s − 5-s + 1.18·6-s + 4.49·7-s + 3.07·8-s + 9-s + 1.18·10-s − 6.47·11-s + 0.592·12-s − 2.92·13-s − 5.33·14-s + 15-s − 2.46·16-s − 1.67·17-s − 1.18·18-s + 0.592·20-s − 4.49·21-s + 7.67·22-s − 8.57·23-s − 3.07·24-s + 25-s + 3.46·26-s − 27-s − 2.66·28-s − 8.22·29-s + ⋯
L(s)  = 1  − 0.838·2-s − 0.577·3-s − 0.296·4-s − 0.447·5-s + 0.484·6-s + 1.69·7-s + 1.08·8-s + 0.333·9-s + 0.375·10-s − 1.95·11-s + 0.171·12-s − 0.810·13-s − 1.42·14-s + 0.258·15-s − 0.615·16-s − 0.405·17-s − 0.279·18-s + 0.132·20-s − 0.981·21-s + 1.63·22-s − 1.78·23-s − 0.627·24-s + 0.200·25-s + 0.679·26-s − 0.192·27-s − 0.503·28-s − 1.52·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5415 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5415\)    =    \(3 \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(43.2389\)
Root analytic conductor: \(6.57563\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5415,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4026136714\)
\(L(\frac12)\) \(\approx\) \(0.4026136714\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + 1.18T + 2T^{2} \)
7 \( 1 - 4.49T + 7T^{2} \)
11 \( 1 + 6.47T + 11T^{2} \)
13 \( 1 + 2.92T + 13T^{2} \)
17 \( 1 + 1.67T + 17T^{2} \)
23 \( 1 + 8.57T + 23T^{2} \)
29 \( 1 + 8.22T + 29T^{2} \)
31 \( 1 - 5.82T + 31T^{2} \)
37 \( 1 - 0.0985T + 37T^{2} \)
41 \( 1 - 3.90T + 41T^{2} \)
43 \( 1 + 3.95T + 43T^{2} \)
47 \( 1 + 1.07T + 47T^{2} \)
53 \( 1 - 1.75T + 53T^{2} \)
59 \( 1 - 0.922T + 59T^{2} \)
61 \( 1 + 6.35T + 61T^{2} \)
67 \( 1 - 13.7T + 67T^{2} \)
71 \( 1 - 3.64T + 71T^{2} \)
73 \( 1 + 15.5T + 73T^{2} \)
79 \( 1 + 3.73T + 79T^{2} \)
83 \( 1 + 1.18T + 83T^{2} \)
89 \( 1 - 12.0T + 89T^{2} \)
97 \( 1 - 5.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.996959677735951580475489990499, −7.78053706151529661061800818399, −7.18504221982360790080849199420, −5.83192035208270537086127395215, −5.11879064273052265401971196578, −4.70060328916272448656058798953, −3.99540614941716856671999565797, −2.42878133269364813577948992968, −1.72069822819598004833306838819, −0.39725981633737071657272328007, 0.39725981633737071657272328007, 1.72069822819598004833306838819, 2.42878133269364813577948992968, 3.99540614941716856671999565797, 4.70060328916272448656058798953, 5.11879064273052265401971196578, 5.83192035208270537086127395215, 7.18504221982360790080849199420, 7.78053706151529661061800818399, 7.996959677735951580475489990499

Graph of the $Z$-function along the critical line