L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 3·5-s + 4·6-s − 2·7-s + 4·8-s + 3·9-s + 6·10-s + 11-s + 6·12-s + 2·13-s − 4·14-s + 6·15-s + 5·16-s − 17-s + 6·18-s + 3·19-s + 9·20-s − 4·21-s + 2·22-s − 7·23-s + 8·24-s + 25-s + 4·26-s + 4·27-s − 6·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.34·5-s + 1.63·6-s − 0.755·7-s + 1.41·8-s + 9-s + 1.89·10-s + 0.301·11-s + 1.73·12-s + 0.554·13-s − 1.06·14-s + 1.54·15-s + 5/4·16-s − 0.242·17-s + 1.41·18-s + 0.688·19-s + 2.01·20-s − 0.872·21-s + 0.426·22-s − 1.45·23-s + 1.63·24-s + 1/5·25-s + 0.784·26-s + 0.769·27-s − 1.13·28-s + ⋯ |
Λ(s)=(=(298116s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(298116s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
298116
= 22⋅32⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
19.0081 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 298116, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
8.066534739 |
L(21) |
≈ |
8.066534739 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | C1 | (1−T)2 |
| 7 | C1 | (1+T)2 |
| 13 | C1 | (1−T)2 |
good | 5 | C22 | 1−3T+8T2−3pT3+p2T4 |
| 11 | D4 | 1−T+18T2−pT3+p2T4 |
| 17 | D4 | 1+T−4T2+pT3+p2T4 |
| 19 | D4 | 1−3T+2T2−3pT3+p2T4 |
| 23 | D4 | 1+7T+54T2+7pT3+p2T4 |
| 29 | D4 | 1−T+20T2−pT3+p2T4 |
| 31 | D4 | 1+4T−2T2+4pT3+p2T4 |
| 37 | D4 | 1+11T+100T2+11pT3+p2T4 |
| 41 | D4 | 1−6T+74T2−6pT3+p2T4 |
| 43 | D4 | 1+17T+154T2+17pT3+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 59 | D4 | 1+12T+86T2+12pT3+p2T4 |
| 61 | D4 | 1−T+84T2−pT3+p2T4 |
| 67 | D4 | 1+6T+126T2+6pT3+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | D4 | 1+3T+144T2+3pT3+p2T4 |
| 79 | D4 | 1+14T+190T2+14pT3+p2T4 |
| 83 | D4 | 1−26T+318T2−26pT3+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | D4 | 1+4T−74T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96102185939495039898716611437, −10.41857078250021618048528429289, −10.22060041031839152001460924305, −9.756888510714417580519514037867, −9.233370560023010947145845166715, −9.010485694780640031278337377431, −8.305995732921860230626379067102, −7.83825761795388458926986676872, −7.32618673380141590440426968804, −6.71997963436205347221010032644, −6.32928801133355306306372815819, −6.09386238561401144317148233861, −5.20605424187117081970844569536, −5.20040415974629017633015291518, −4.13517339401693938788755970479, −3.73522433295182470573736754474, −3.32218683883157689035440528794, −2.67685834892058680739712973755, −1.96532787879004213571976830321, −1.61386041996840783631232130153,
1.61386041996840783631232130153, 1.96532787879004213571976830321, 2.67685834892058680739712973755, 3.32218683883157689035440528794, 3.73522433295182470573736754474, 4.13517339401693938788755970479, 5.20040415974629017633015291518, 5.20605424187117081970844569536, 6.09386238561401144317148233861, 6.32928801133355306306372815819, 6.71997963436205347221010032644, 7.32618673380141590440426968804, 7.83825761795388458926986676872, 8.305995732921860230626379067102, 9.010485694780640031278337377431, 9.233370560023010947145845166715, 9.756888510714417580519514037867, 10.22060041031839152001460924305, 10.41857078250021618048528429289, 10.96102185939495039898716611437