Properties

Label 4-546e2-1.1-c1e2-0-66
Degree $4$
Conductor $298116$
Sign $1$
Analytic cond. $19.0081$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 3·4-s + 3·5-s + 4·6-s − 2·7-s + 4·8-s + 3·9-s + 6·10-s + 11-s + 6·12-s + 2·13-s − 4·14-s + 6·15-s + 5·16-s − 17-s + 6·18-s + 3·19-s + 9·20-s − 4·21-s + 2·22-s − 7·23-s + 8·24-s + 25-s + 4·26-s + 4·27-s − 6·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.34·5-s + 1.63·6-s − 0.755·7-s + 1.41·8-s + 9-s + 1.89·10-s + 0.301·11-s + 1.73·12-s + 0.554·13-s − 1.06·14-s + 1.54·15-s + 5/4·16-s − 0.242·17-s + 1.41·18-s + 0.688·19-s + 2.01·20-s − 0.872·21-s + 0.426·22-s − 1.45·23-s + 1.63·24-s + 1/5·25-s + 0.784·26-s + 0.769·27-s − 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(298116\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.0081\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 298116,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.066534739\)
\(L(\frac12)\) \(\approx\) \(8.066534739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$C_2^2$ \( 1 - 3 T + 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 3 T + 2 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 7 T + 54 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - T + 20 T^{2} - p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 11 T + 100 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 74 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 17 T + 154 T^{2} + 17 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$D_{4}$ \( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - T + 84 T^{2} - p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 126 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 + 3 T + 144 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 14 T + 190 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 26 T + 318 T^{2} - 26 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 + 4 T - 74 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96102185939495039898716611437, −10.41857078250021618048528429289, −10.22060041031839152001460924305, −9.756888510714417580519514037867, −9.233370560023010947145845166715, −9.010485694780640031278337377431, −8.305995732921860230626379067102, −7.83825761795388458926986676872, −7.32618673380141590440426968804, −6.71997963436205347221010032644, −6.32928801133355306306372815819, −6.09386238561401144317148233861, −5.20605424187117081970844569536, −5.20040415974629017633015291518, −4.13517339401693938788755970479, −3.73522433295182470573736754474, −3.32218683883157689035440528794, −2.67685834892058680739712973755, −1.96532787879004213571976830321, −1.61386041996840783631232130153, 1.61386041996840783631232130153, 1.96532787879004213571976830321, 2.67685834892058680739712973755, 3.32218683883157689035440528794, 3.73522433295182470573736754474, 4.13517339401693938788755970479, 5.20040415974629017633015291518, 5.20605424187117081970844569536, 6.09386238561401144317148233861, 6.32928801133355306306372815819, 6.71997963436205347221010032644, 7.32618673380141590440426968804, 7.83825761795388458926986676872, 8.305995732921860230626379067102, 9.010485694780640031278337377431, 9.233370560023010947145845166715, 9.756888510714417580519514037867, 10.22060041031839152001460924305, 10.41857078250021618048528429289, 10.96102185939495039898716611437

Graph of the $Z$-function along the critical line