L(s) = 1 | + 2-s + (−1.63 + 0.573i)3-s + 4-s + (−1.62 + 0.936i)5-s + (−1.63 + 0.573i)6-s + (2.04 − 1.68i)7-s + 8-s + (2.34 − 1.87i)9-s + (−1.62 + 0.936i)10-s + (2.54 + 4.41i)11-s + (−1.63 + 0.573i)12-s + (−3.20 + 1.64i)13-s + (2.04 − 1.68i)14-s + (2.11 − 2.46i)15-s + 16-s + 2.96·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.943 + 0.331i)3-s + 0.5·4-s + (−0.725 + 0.418i)5-s + (−0.667 + 0.234i)6-s + (0.772 − 0.635i)7-s + 0.353·8-s + (0.780 − 0.625i)9-s + (−0.512 + 0.296i)10-s + (0.768 + 1.33i)11-s + (−0.471 + 0.165i)12-s + (−0.889 + 0.456i)13-s + (0.545 − 0.449i)14-s + (0.545 − 0.635i)15-s + 0.250·16-s + 0.718·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.438 - 0.898i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.438 - 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32057 + 0.824995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32057 + 0.824995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (1.63 - 0.573i)T \) |
| 7 | \( 1 + (-2.04 + 1.68i)T \) |
| 13 | \( 1 + (3.20 - 1.64i)T \) |
good | 5 | \( 1 + (1.62 - 0.936i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.54 - 4.41i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 2.96T + 17T^{2} \) |
| 19 | \( 1 + (1.30 - 2.25i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6.06iT - 23T^{2} \) |
| 29 | \( 1 + (-7.30 - 4.21i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.09 + 7.09i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.37iT - 37T^{2} \) |
| 41 | \( 1 + (-4.85 - 2.80i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.87 + 8.44i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.70 - 1.56i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (8.21 + 4.74i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 2.20iT - 59T^{2} \) |
| 61 | \( 1 + (-5.11 - 2.95i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.56 + 5.52i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.27 + 12.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.99 + 3.46i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.14 + 8.91i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.63iT - 83T^{2} \) |
| 89 | \( 1 - 14.7iT - 89T^{2} \) |
| 97 | \( 1 + (-5.83 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21588167664937121046188169055, −10.22212298265330977765408738520, −9.622168436947119440645033883457, −7.83750050123463408293884575905, −7.20431828600471669028875985848, −6.42804855716614875199358550516, −5.05679158324959996003521412068, −4.44875913485014230959188544621, −3.58846068474168299395180988969, −1.60274833398505651072122045953,
0.901534433040495637660600490941, 2.69529761835443653324639674511, 4.27530047969058957345619782040, 4.98911023403746118236561381510, 5.91671120423071214697731096094, 6.75797060574737948092813315169, 7.983513034813319442326124053636, 8.524898698785794981375184716038, 10.06699509878677602028175421477, 11.08264243538510036769875982327