L(s) = 1 | + 2-s + (0.517 + 1.65i)3-s + 4-s + (0.870 + 0.502i)5-s + (0.517 + 1.65i)6-s + (2.64 + 0.0151i)7-s + 8-s + (−2.46 + 1.71i)9-s + (0.870 + 0.502i)10-s + (−0.310 + 0.537i)11-s + (0.517 + 1.65i)12-s + (−1.14 − 3.41i)13-s + (2.64 + 0.0151i)14-s + (−0.380 + 1.69i)15-s + 16-s + 0.342·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.298 + 0.954i)3-s + 0.5·4-s + (0.389 + 0.224i)5-s + (0.211 + 0.674i)6-s + (0.999 + 0.00572i)7-s + 0.353·8-s + (−0.821 + 0.570i)9-s + (0.275 + 0.158i)10-s + (−0.0935 + 0.162i)11-s + (0.149 + 0.477i)12-s + (−0.316 − 0.948i)13-s + (0.707 + 0.00404i)14-s + (−0.0981 + 0.438i)15-s + 0.250·16-s + 0.0831·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35195 + 1.29103i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35195 + 1.29103i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.517 - 1.65i)T \) |
| 7 | \( 1 + (-2.64 - 0.0151i)T \) |
| 13 | \( 1 + (1.14 + 3.41i)T \) |
good | 5 | \( 1 + (-0.870 - 0.502i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.310 - 0.537i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.342T + 17T^{2} \) |
| 19 | \( 1 + (-2.16 - 3.75i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (8.23 - 4.75i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.25 + 2.16i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.34iT - 37T^{2} \) |
| 41 | \( 1 + (-7.47 + 4.31i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.602 - 1.04i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0442 - 0.0255i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.15 - 2.39i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 3.08iT - 59T^{2} \) |
| 61 | \( 1 + (-5.78 + 3.34i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.75 + 2.74i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.621 - 1.07i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.46 + 7.72i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.458 + 0.793i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.2iT - 83T^{2} \) |
| 89 | \( 1 - 3.60iT - 89T^{2} \) |
| 97 | \( 1 + (5.10 - 8.84i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82063022896261079524441101804, −10.28494419985807176782211431659, −9.329914740492921559402461754831, −8.167548384169924769789819926132, −7.50283027091694526037221438991, −5.92891917288226474973162921607, −5.26733535979509451328681098773, −4.34443936182808122445708953294, −3.25352604213497076522700545731, −2.07023141257072071309904765265,
1.49736473607590016577676537514, 2.46715198442505739132399954789, 3.93109452029502828074714517347, 5.18281402828185748282385122251, 5.93689368659463580725152849732, 7.16520750625400543704706384628, 7.66828185366850206439718088880, 8.837572296784595565919667477396, 9.610424436527337458007734127002, 11.33436574877215479409896010748