L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 − 0.5i)3-s + (0.866 + 0.499i)4-s + (2.50 + 2.50i)5-s + (0.965 − 0.258i)6-s + (−1.87 − 1.86i)7-s + (0.707 + 0.707i)8-s + (0.499 − 0.866i)9-s + (1.77 + 3.06i)10-s + (−0.883 + 3.29i)11-s + 12-s + (1.87 − 3.08i)13-s + (−1.32 − 2.28i)14-s + (3.41 + 0.916i)15-s + (0.500 + 0.866i)16-s + (−0.906 + 1.57i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.499 − 0.288i)3-s + (0.433 + 0.249i)4-s + (1.11 + 1.11i)5-s + (0.394 − 0.105i)6-s + (−0.709 − 0.705i)7-s + (0.249 + 0.249i)8-s + (0.166 − 0.288i)9-s + (0.559 + 0.969i)10-s + (−0.266 + 0.993i)11-s + 0.288·12-s + (0.518 − 0.854i)13-s + (−0.355 − 0.611i)14-s + (0.882 + 0.236i)15-s + (0.125 + 0.216i)16-s + (−0.219 + 0.380i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 - 0.460i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.887 - 0.460i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.72322 + 0.664759i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.72322 + 0.664759i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (1.87 + 1.86i)T \) |
| 13 | \( 1 + (-1.87 + 3.08i)T \) |
good | 5 | \( 1 + (-2.50 - 2.50i)T + 5iT^{2} \) |
| 11 | \( 1 + (0.883 - 3.29i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (0.906 - 1.57i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.44 + 1.72i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (5.86 - 3.38i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.24 + 3.87i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (6.69 + 6.69i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.544 + 2.03i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (1.43 - 5.35i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (2.23 + 1.28i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.09 + 2.09i)T - 47iT^{2} \) |
| 53 | \( 1 - 12.2T + 53T^{2} \) |
| 59 | \( 1 + (-0.202 - 0.753i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.49 + 2.01i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (11.6 + 3.13i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.20 + 4.48i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-4.59 + 4.59i)T - 73iT^{2} \) |
| 79 | \( 1 - 8.32T + 79T^{2} \) |
| 83 | \( 1 + (10.8 + 10.8i)T + 83iT^{2} \) |
| 89 | \( 1 + (6.87 + 1.84i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.49 + 0.401i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71925853176903160000809746875, −9.997346290600912569211371597114, −9.418557374564260978183682141890, −7.70128592579457937486466467114, −7.25669084453866307288231424364, −6.24917261075135170315303712148, −5.56904774413443644412325455171, −3.92264709062449569988600305156, −3.02777960833541359769789408250, −1.96379759232745674623012129776,
1.59379829682392479623482979330, 2.83897002556809528450419081902, 3.96023697865023473115282282827, 5.35628654830092438590245660845, 5.69127632321221425224722948128, 6.85826877138938558780540679562, 8.423744143211347630125075785127, 9.074087375768042296945535548290, 9.698067008246533692061644106251, 10.66117070810307229771494944844