L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 + 0.5i)3-s + (−0.866 − 0.499i)4-s + (−3.04 + 3.04i)5-s + (−0.258 − 0.965i)6-s + (−1.02 + 2.43i)7-s + (0.707 − 0.707i)8-s + (0.499 − 0.866i)9-s + (−2.15 − 3.72i)10-s + (−2.01 − 0.539i)11-s + 12-s + (0.973 − 3.47i)13-s + (−2.08 − 1.62i)14-s + (1.11 − 4.15i)15-s + (0.500 + 0.866i)16-s + (−0.994 + 1.72i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.499 + 0.288i)3-s + (−0.433 − 0.249i)4-s + (−1.36 + 1.36i)5-s + (−0.105 − 0.394i)6-s + (−0.388 + 0.921i)7-s + (0.249 − 0.249i)8-s + (0.166 − 0.288i)9-s + (−0.680 − 1.17i)10-s + (−0.606 − 0.162i)11-s + 0.288·12-s + (0.269 − 0.962i)13-s + (−0.558 − 0.434i)14-s + (0.287 − 1.07i)15-s + (0.125 + 0.216i)16-s + (−0.241 + 0.417i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.150 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.150 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0911417 - 0.0782842i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0911417 - 0.0782842i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (1.02 - 2.43i)T \) |
| 13 | \( 1 + (-0.973 + 3.47i)T \) |
good | 5 | \( 1 + (3.04 - 3.04i)T - 5iT^{2} \) |
| 11 | \( 1 + (2.01 + 0.539i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.994 - 1.72i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.11 - 4.15i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.911 + 0.526i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.33 - 4.04i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.73 + 5.73i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.17 - 0.582i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (9.88 + 2.64i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (7.68 + 4.43i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.833 + 0.833i)T + 47iT^{2} \) |
| 53 | \( 1 + 6.61T + 53T^{2} \) |
| 59 | \( 1 + (-7.58 + 2.03i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (9.14 + 5.27i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.51 - 13.1i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-3.38 + 0.908i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-4.18 - 4.18i)T + 73iT^{2} \) |
| 79 | \( 1 + 2.85T + 79T^{2} \) |
| 83 | \( 1 + (9.59 - 9.59i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.02 - 3.81i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.29 - 4.83i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41244635924600478322705446317, −10.48832618018104624837225308512, −9.984457574396964642868343285455, −8.437085930486302453052606865573, −7.989112928327192305949435860113, −6.88249636735653475961410004222, −6.16798114254954230809024480182, −5.18542742115224681636564934820, −3.80275684497677991090633784587, −2.91549042134991527098845097036,
0.088559566094722090639835191710, 1.25921686894358984149064901107, 3.28327331613262837456743937800, 4.55056188835194569774302168456, 4.82539457252337378321316687251, 6.66393976576948100421144573997, 7.57246415738368906632291046158, 8.370955731367755625093685095553, 9.243461281375022591483644898908, 10.22476327545387284167154001343