L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 + 0.5i)3-s + (−0.866 − 0.499i)4-s + (−2.63 + 2.63i)5-s + (0.258 + 0.965i)6-s + (−1.51 − 2.16i)7-s + (−0.707 + 0.707i)8-s + (0.499 − 0.866i)9-s + (1.86 + 3.22i)10-s + (4.21 + 1.12i)11-s + 12-s + (3.32 − 1.39i)13-s + (−2.48 + 0.903i)14-s + (0.963 − 3.59i)15-s + (0.500 + 0.866i)16-s + (3.14 − 5.44i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.499 + 0.288i)3-s + (−0.433 − 0.249i)4-s + (−1.17 + 1.17i)5-s + (0.105 + 0.394i)6-s + (−0.572 − 0.819i)7-s + (−0.249 + 0.249i)8-s + (0.166 − 0.288i)9-s + (0.588 + 1.01i)10-s + (1.27 + 0.340i)11-s + 0.288·12-s + (0.922 − 0.387i)13-s + (−0.664 + 0.241i)14-s + (0.248 − 0.928i)15-s + (0.125 + 0.216i)16-s + (0.762 − 1.32i)17-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(0.257+0.966i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(0.257+0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
0.257+0.966i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), 0.257+0.966i)
|
Particular Values
L(1) |
≈ |
0.753156−0.578458i |
L(21) |
≈ |
0.753156−0.578458i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258+0.965i)T |
| 3 | 1+(0.866−0.5i)T |
| 7 | 1+(1.51+2.16i)T |
| 13 | 1+(−3.32+1.39i)T |
good | 5 | 1+(2.63−2.63i)T−5iT2 |
| 11 | 1+(−4.21−1.12i)T+(9.52+5.5i)T2 |
| 17 | 1+(−3.14+5.44i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.27+4.76i)T+(−16.4+9.5i)T2 |
| 23 | 1+(2.06−1.19i)T+(11.5−19.9i)T2 |
| 29 | 1+(0.949+1.64i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−0.189+0.189i)T−31iT2 |
| 37 | 1+(−11.2−3.01i)T+(32.0+18.5i)T2 |
| 41 | 1+(−4.94−1.32i)T+(35.5+20.5i)T2 |
| 43 | 1+(6.21+3.58i)T+(21.5+37.2i)T2 |
| 47 | 1+(−1.20−1.20i)T+47iT2 |
| 53 | 1−10.0T+53T2 |
| 59 | 1+(−9.27+2.48i)T+(51.0−29.5i)T2 |
| 61 | 1+(10.6+6.17i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.16+11.8i)T+(−58.0−33.5i)T2 |
| 71 | 1+(7.71−2.06i)T+(61.4−35.5i)T2 |
| 73 | 1+(6.68+6.68i)T+73iT2 |
| 79 | 1+11.0T+79T2 |
| 83 | 1+(−4.21+4.21i)T−83iT2 |
| 89 | 1+(1.66−6.20i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−0.409−1.52i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79962683549546878150271711893, −10.00638268167603032582473939549, −9.186580052891900515247387355479, −7.75109380476531172517453627751, −6.93745177464254969896036797956, −6.15170829399854312012113035225, −4.51647812682213750833591693502, −3.77261840534375560917491166034, −2.99999041049097704598742854719, −0.68611050954939521461693380092,
1.22542168352905879633969639357, 3.73435727041820839557799715978, 4.26000745018103231836451704266, 5.80828771958352231246760110551, 6.10104157905661702722048817139, 7.41008483710006734721240236073, 8.542621943766790547572548550396, 8.662996775224917027064434294374, 9.934351282937442670193661075727, 11.39147455130831797496401670635