L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 + 0.5i)3-s + (−0.866 − 0.499i)4-s + (−2.63 + 2.63i)5-s + (0.258 + 0.965i)6-s + (−1.51 − 2.16i)7-s + (−0.707 + 0.707i)8-s + (0.499 − 0.866i)9-s + (1.86 + 3.22i)10-s + (4.21 + 1.12i)11-s + 12-s + (3.32 − 1.39i)13-s + (−2.48 + 0.903i)14-s + (0.963 − 3.59i)15-s + (0.500 + 0.866i)16-s + (3.14 − 5.44i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.499 + 0.288i)3-s + (−0.433 − 0.249i)4-s + (−1.17 + 1.17i)5-s + (0.105 + 0.394i)6-s + (−0.572 − 0.819i)7-s + (−0.249 + 0.249i)8-s + (0.166 − 0.288i)9-s + (0.588 + 1.01i)10-s + (1.27 + 0.340i)11-s + 0.288·12-s + (0.922 − 0.387i)13-s + (−0.664 + 0.241i)14-s + (0.248 − 0.928i)15-s + (0.125 + 0.216i)16-s + (0.762 − 1.32i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.257 + 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.257 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.753156 - 0.578458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.753156 - 0.578458i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (1.51 + 2.16i)T \) |
| 13 | \( 1 + (-3.32 + 1.39i)T \) |
good | 5 | \( 1 + (2.63 - 2.63i)T - 5iT^{2} \) |
| 11 | \( 1 + (-4.21 - 1.12i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-3.14 + 5.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.27 + 4.76i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (2.06 - 1.19i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.949 + 1.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.189 + 0.189i)T - 31iT^{2} \) |
| 37 | \( 1 + (-11.2 - 3.01i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-4.94 - 1.32i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (6.21 + 3.58i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.20 - 1.20i)T + 47iT^{2} \) |
| 53 | \( 1 - 10.0T + 53T^{2} \) |
| 59 | \( 1 + (-9.27 + 2.48i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (10.6 + 6.17i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.16 + 11.8i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (7.71 - 2.06i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (6.68 + 6.68i)T + 73iT^{2} \) |
| 79 | \( 1 + 11.0T + 79T^{2} \) |
| 83 | \( 1 + (-4.21 + 4.21i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.66 - 6.20i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.409 - 1.52i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79962683549546878150271711893, −10.00638268167603032582473939549, −9.186580052891900515247387355479, −7.75109380476531172517453627751, −6.93745177464254969896036797956, −6.15170829399854312012113035225, −4.51647812682213750833591693502, −3.77261840534375560917491166034, −2.99999041049097704598742854719, −0.68611050954939521461693380092,
1.22542168352905879633969639357, 3.73435727041820839557799715978, 4.26000745018103231836451704266, 5.80828771958352231246760110551, 6.10104157905661702722048817139, 7.41008483710006734721240236073, 8.542621943766790547572548550396, 8.662996775224917027064434294374, 9.934351282937442670193661075727, 11.39147455130831797496401670635