L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.54 − 0.785i)3-s + (0.499 + 0.866i)4-s + (−0.890 + 1.54i)5-s + (0.944 + 1.45i)6-s + (−1.51 + 2.16i)7-s − 0.999i·8-s + (1.76 + 2.42i)9-s + (1.54 − 0.890i)10-s + (3.61 − 2.08i)11-s + (−0.0921 − 1.72i)12-s + i·13-s + (2.39 − 1.11i)14-s + (2.58 − 1.68i)15-s + (−0.5 + 0.866i)16-s + (−3.81 − 6.60i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.891 − 0.453i)3-s + (0.249 + 0.433i)4-s + (−0.398 + 0.689i)5-s + (0.385 + 0.592i)6-s + (−0.573 + 0.819i)7-s − 0.353i·8-s + (0.589 + 0.808i)9-s + (0.487 − 0.281i)10-s + (1.09 − 0.629i)11-s + (−0.0265 − 0.499i)12-s + 0.277i·13-s + (0.640 − 0.298i)14-s + (0.667 − 0.434i)15-s + (−0.125 + 0.216i)16-s + (−0.924 − 1.60i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 + 0.354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.934 + 0.354i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0326347 - 0.177870i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0326347 - 0.177870i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (1.54 + 0.785i)T \) |
| 7 | \( 1 + (1.51 - 2.16i)T \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 + (0.890 - 1.54i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.61 + 2.08i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.81 + 6.60i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.62 + 1.51i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (6.70 + 3.87i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.65iT - 29T^{2} \) |
| 31 | \( 1 + (1.78 - 1.03i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.95 + 6.84i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.69T + 41T^{2} \) |
| 43 | \( 1 - 0.322T + 43T^{2} \) |
| 47 | \( 1 + (-2.04 + 3.54i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (10.2 - 5.91i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.86 + 11.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.38 + 4.26i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.25 + 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.91iT - 71T^{2} \) |
| 73 | \( 1 + (-1.14 + 0.661i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.64 + 9.77i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.38T + 83T^{2} \) |
| 89 | \( 1 + (-1.23 + 2.14i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.52iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77961777652831210460145203589, −9.436915319828194648146774531464, −8.873982519359519653909866411933, −7.59207445233467407040305991286, −6.66514347125800246593006504004, −6.23150296664961188553859719143, −4.74365727752674938268948692491, −3.32394708937258439854469664913, −2.06660173435060752356409562029, −0.14737582946263833157837385153,
1.43981750329072745686160564219, 4.02011703282087549024320462168, 4.38111313948650041405061724549, 6.04437158329487046285988507110, 6.44752784753664475784674918477, 7.63270568108040622588433449298, 8.575460235412081598268236073314, 9.632971513136022011705081087664, 10.14459689707846711647799842137, 11.02789974762629251316287729168